
WON '

CARNEGIE MELLON
Department of Electrical and Computer Engineering

c"Behavior-Based Fault Monitoring"

0
N" Principal Investigator: John P. Shen

Center for Dependable Systems
Department of Electrical and Computer Engineering

Carnegie Mellon University
Schenley Park, Pittsburgh PA 15213

(412) 268-3601
INTERNET address: shen@ece.cmu.edu

CMU Research Center for Dependable Systems
Carnegie Mellon University

Pittsburgh, PA 15213-3890

.DTiC

., JAN 0 3 i991

Car egie

Mell nD~7 TZ7TA C

Updated Final Report to Office of Naval Research
Contract N00014-86-K-0507

December 3, 1990

"Behavior-Based Fault Monitoring"

Principal Investigator: John P. Shen

Center for Dependable Systems
Department of Electrical and Computer Engineering

Carnegie Mellon University
Schenley Park, Pittsburgh PA 15213

(412) 268-3601
INTERNET address: shen@ece.cmu.edu

Abstract

An approach is developed which exploits the deterministic behavior of a processor to
perform concurrent fault monitoring. A very low cost and highly effective technique,
called Continuous Signature Monitoring (CSM), has been developed. This technique is
capable of detecting transients with very low detection latency, and requires very
minimal memory overhead and performance penalty. This technique has been applied
to both CISC and RISC type processors. Both analytical and experimental results have
been obtained in validating the effectiveness of the approach. CSM has been adopted
by two aerospace companies in their design of a 32-bit RISC processor targeted for
avionics and space applications. It appears that the signature monitoring technique can
be extended to detect computer viruses as well via a form of program encryption. r

2

I. Summary of Accomplishments

This section presents the technical motivations for fault monitoring, summarizes our
signature monitoring technique called Continuous Signature Monitoring, and compares
our results with other techniques. A list of publications resulting from our current
contract is provided.

1. Motivation for Behavior-Based Monitoring

Concurrent error detection is necessary to ensure reliable computer operation.
Although permanent hardware faults can be detected using built-in self-test (BIST) or an
external tester, concurrent detection must be used to detect errors caused by transient
faults. Based on a number of experimental studies, transient faults constitute the
dominant fault type in most systems during system operation.

Traditional approaches to concurrent error detection add redundancy based on a
computer's structure. The most common approach is structural duplication. Although
effective, duplication is too expensive for all but a few applications. Redundancy can
also be incorporated via the use of error checking codes. However, most techniques
based on error checking codes are only effective against very specific error types, e.g.
single or double bit errors.

We propose an approach to concurrent error detection, or fault monitoring, in
processors which uses behavioral abstraction of the executing program that is
monitored for run-time violations. Such behavior-based approach has the advantage
that errors from any source are potentially detectable, including software and hardware
design faults, as well as permanent and transient faults. Abstractions can be formed
using various aspects of program behavior, including control flow, memory access,
input-output, and object type or range. Experimental comparison of various
abstractions shows that processor control flow offers the most error-detection potential.
A number of researchers have proposed techniques that detect control-flow related
errors using a simple monitor and signatured programs. We called these signature
monitoring techniques.

2. Continuous Signature Monitoring

During the past several years, we have developed a new signature monitoring approach
for processor fault monitoring that uses a simple hardware monitor and signatures
embedded into the executing program. Signature-monitoring techniques detect a large
portion of processor control errors at a fraction of the cost of duplication. Analytical
methods developed in this work show that the new approach, Continuous Signature
Monitoring (CSM), makes major advances beyond existing techniques.

3

A signature-monitoring technique's effectiveness can be characterized by five
properties: (1) error-detection coverage, (2) memory overhead, (3) processor-
performance loss, (4) error-detection latency, and (5) monitor complexity. Existing
signature-monitoring techniques improve upon the original basic technique in one or
more of these properties. However, all of the proposed improvements degrade one or
more of the other properties. CSM approach makes major improvements in all
signature-monitoring properties.

CSM reduces the fraction of undetected control-flow errors by orders of magnitude, to
less than 10-6. The number of signatures reaches a theoretical minimum, lowered by az
much as three times to a range of 4-11%. Signature cost is reduced by placing CSM
signatures at locations that minimize performance loss and, for some architectures,
memory overhead. CSM exploits the program memory's SEC/DED code to decrease
average error-detection latency by as much as 1000 times, to 0.016 program memory
cycles, without increasing memory overhead. This short latency facilitates quick
recovery in the tolerance of transient faults.

Figure 1 below compares the effectiveness of the CSM technique with three other
signature monitoring techniques. The basic technique is the technique originally
proposed. Path Signature Analysis (PSA) was developed at Stanford. The Signatured
Instruction Streams (SIS) technique was developed at CMU and is the predecessor to
the current CSM technique.

Basic PSA SIS CSM

Total Memory 10-5% 2-2% 6-5% -11...
Overhead 10-25% 12-21% 6-15% 4-11%

Latency in
PM Cycles 2-5 7-17 7-17 0.016-1.0

Control-Flow
Error Coverage 96-99% 99.5-99.9% 85-93% 99.9999%

Control-Bit

Error Coverage 99.9999% 100% 85-93% 99.9999%

Figure 1. Comparison of CSM to Other Signature Monitoring Techniques.

Statement "A" per telecon Dr. Keith
Bromley. Naval Ocean Systems Center/code
12616. San Diego, CA 921592-5000.

VHG 1/2/91

4

3. Resulting Publications

1. M.A. Schuette, J.P. Shen, D.P. Siewiorek and Y.X. Zhu, "An Experimental
Evaluation of Two Concurrent Error Detection Approaches," Proc. of 16th
Int. Fault Tolerant Computing Symp., July 1986.

2. J.P. Shen and M.A. Schuette, "Processor Control Flow Monitoring Using
Signatured Instruction Streams," IEEE Trans. on Computers, March
1987.

3. J.P. Shen and S.P. Tomas, "A Roving Monitoring Processor for Detection
of Control Flow Errors in Multiple Processor Systems," Microprocessing
and Microprogramming: The Euromicro Journal, Special Issue on
Fault Tolerant Computing, North-Holland, May 1987.

4. K.D. Wilken and J.P. Shen, "Embedded Signature Monitoring: Analysis
and Techniques," Proc. of Int. Test Conf., September 1987.

5. K.D. Wilken and J.P. Shen, "Continuous Signature Monitoring: Efficient
Concurrent-Detection of Processor Control Errors," Proc. of Int. Test
Conf., September 1988.

6. K.D. Wilken and J.P. Shen, "Concurrent Error Detection Using Signature
Monitoring and Encryption," Int. Conf. on Dependable Computing for
Critical Applications, August 1989.

7. K.D. Wilken and J.P. Shen, "Continuous Signature Monitoring: Efficien.
Concurrent Detection of Processor Control Errors," IEEE Trans. on
Computer Aided Design, June 1990.

8. K.D. Wilken and J.P. Shen, "Detecting Processor Hardware Errors and
Computer Viruses Using Program Encryption and Signature Monitoring,"
submitted to IEEE Trans. on Computers, 1990.

I. Presentation of Technical Results

This section is a compendium of major papers published through the support of this
research contract. These papers document the key results of our research on
Continuous Signature Monitoring as well as our earlier work on Signatured Instruction
Streams. In total, three journal papers and four conference papers have resulted from
this work. One more paper on extending CSM to cover a more generalized fault model
and to detect computer viruses has been submitted to IEEE Transactions on
Computers.

264 IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO 3. MARCH 1987

Processor Control Flow Monitoring Using
Signatured Instruction Streams

MICHAEL A. SCHUETTE, STUDENT MEMBER, IEEE, AND JOHN PAUL SHEN, MEMBER, IEEE

Abstract-This paper presents an innovative approach, called tion of a general purpose processor has become popular.
signatured instruction streams (SIS), to the on-line detection of Masson el al. suggested certain abstractions of the correct
control flow errors caused by transient and intermittent faults. At behavior of a processor [16] and proposed mechanisms to
compile time an application program is appropriately partitioned
Into smaller subprograms, and cyclic codes, or signatures, expose deviations from these abstractions. Lu proposed an
characterizing the control flow of each subprogram are generated approach called structural integrity checking which uses a
and embedded in the object code. At runtime, special built-in watchdog processor to check the c3rrecmesq of high-level
hardware regenerates these signatures using runtime information control flow structures at runtime [11]. Namjoo and Mc-
and compares them to the precomputed signatures. A mismatch Cluskey proposed the use of a watchdog processor to detect
indicates the detection of an error. A demonstration system,
based on the MC68000 processor, has been designed and built, malfunctions which cause illegal access to the memory
Fault Insertion experiments have been performed using the subsystem [15]. A method introduced by Sridhar and Thatte
demonstration system. The demonstration system, using 17 [19) and the path signature analysis method proposed by
percent hardware overhead, is able to detect 98 percent of faults Namjoo [141 both involve the encoding of the instruction
affecting the control flow and 82 percei, I of all randomly inserted stream at compile time and using this code at runtime to check
fa,,its. the program control flow. Several other techniques for

Index Tenns-Control flow monitoring, error detection cover- checking program control flow have been proposed [221, [41,
age and latency, fault insertion experiments, roving monitoring, 131, [12], [9].
signature analysis, signatured Instruction streams, transient and This paper presents another processor monitoring approach
Intermittent faults. called signatured instruction streams (SIS). The SIS approach

focuses on the monitoring of program control flow in real time
1. INTRODUCTION and mission-oriented systems. The overal research project has

TJRANSIENT and intermittent faults as defined in [2] play a the following features and contributions.
major role in undermining the reliability of digital 1) Unlike most traditional fault-tolerant computing tech-

systems. It is estimated that they occur 10 to 30 times more niques, SIS employs a combination of hardware and software
frequendy than permanent faults [181. When testing for techniques. The combination of these techniques results in an
transient and intermittent faults, the system must be tested in approach which has low hardware and performance overhead
its operational environment and concurrent with its execution yet achieves a high degree of fault coverage.

of the application task. This type of testing is referred to as 2) Although the SIS approach is similar to the methods

concurrent testing or on-line monitoring. presented in [I1I and [14], it does not require the use of a
There is much interest in developing on-line monitoring watchdog processor. Instead, it uses a small, built-in monitor.

schemes for general-purpose processors. Traditionally, mas- Furthermore the SIS scheme reduces the memory overhead by
sive redundancy, e.g., duplication or triplication, and error- using a technique called branch address hashing (BAH).

detecting codes are used to implement on-line checking [5]. 3) An implementation of the SIS approach has been applied

Error coding techniques can be extended to the design of self- to an actual processor, the MC68000, in order to demonstrate

checking logic circuits (2 11. Error checking schemes based on its feasibility and practicality. All the necessary software tools
codes usually assume rather restrictive error models and have have been developed so that the entire approach is completely

limited fault coverage. Massive redundancy is an effective transparent to the application programmer.

means of detecting transient errors. However, massive redun- 4) A hardware demonstration system based on the
dancy can be very costly and can reduce reliability when the MC68000 processor has been built and is fully functional.
redundancy is exhausted. This demonstration system has been used in conjunction with a

Recently, the idea of using a small amount of added programmable hardware fault inserter in the performance of
hardware and/or software to continuously monitor the opera- extensive fault insertion experiments to accurately determine

the transient error coverage and the error detection latency of

Manuscript received December 8. 1984; revised December 20. 1985. This the SIS approach.
work was supported by IBM and by the Semiconductor Research Corporation Section II of this paper presents the basic concepts of the SIS
under Contract SRC-83-01-022. and by the Office of Naval Research. approach. Section III describes the SIS implementation details

The authors are with the Department of Electrical and Computer Engineer- for the MC68000 processor and the MC68000-based SIS
ing. Carnegie-Mellon University. Pillsburgh. PA 15213.

IEEE Log Number 8612055 demonstration system. In Section IV, the fault insertion

0018-9340/87/0300-0264$01.00 © 1987 IEEE

SCHUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING 265

experiments involving the SIS demonstration system are
described. Based on the analysis of the results from the
experiments the error coverage and detection latency of the
SIS approach are determined. Finally, Section V describes
several extensions to this work which have been or are being
performed. Section VI summarizes the major contributions of
this paper.

II. BAsIc CONCEPTS BlOck

On-line monitoring approaches can be viewed as spanning a
hardware to software spectrum. At the hardware end of the
spectrum are the purely hardware approaches such as hard-
ware N-modular redundancy (NMR). Typically, the hardware
approaches have low performance degradation but high
hardware overhead. At the software end of the spectrum are
the purely software approaches like that of Yau and Chen [22]
and Chen and Avizienis [6]. These approaches incur substan- (o

tial performance degradation and relatively low hardware 2
overhead. The SIS approach lies between these two extremes.
Both software and hardware techniques are used, so that the
software is used to reduce hardware overhead while hardware
is used to reduce performancc degradation. (a)(b)

A. Basic Program Partitioning Concepts E I,,II SeNaOI, h d Bancl Ad&s

Fig. 1. Basic partitioning.
The principal aim of the SIS approach is to check the correct

sequencing of instructions of an application program. This can
be done by partitioning the program into blocks of instruc- ORIGINAL OSJECT COOE V/ OBJECT COE V/

OBJECT SIGNA&TURE SIGNATURE

tions. The blocks are chosen such that they have only one entry CODE EaMOIMG HASHING

point and there exists only one valid sequence of instructions
from the entry point to any of the exit points. The instructions FTNICH OP CODE VLRCH OP COE BRANCH OP COE
of each valid sequence are encoded into a signature which is ,C =W=s AA oZsS
then stored at the end of that sequence. At runtime, the S I
signatures for each block are regenerated by using the actual
instructions as they are fetched from memory. By comparing (a) (b)

the signatures generated at runtime to those generated at Fig. 2. Reduction in memory overhead due to signature hashing.

compile time, the correct sequencing of instructions within
each block can be checked. Fig. 1(a) shows an example of a If the runtime generated signature differs from the compile
program that has been partitioned into blocks and a signature time generated signature, the rehashed branch address used by
embedded at each exit point of each block, the processor will be incorrect. If the branch is taken, then

The memory overhead due to the embedding of signatures control flow will go to an erroneous destination. In this case
can be significantly reduced through a technique called branch the error will be detected at the next exit point where there is
address hashing (BAH) 1171. BAH is used whenever the exit an explicitly embedded signature. It is possible for the
point of a block corresponds to a branch instruction. BAH erroneous destination to lie outside the address bounds of the
involves hashing, e.g., bit-wise Exclusive-oR, the associated program. To promptly detect such an occurrence, a program
signature with the branch address of the branch instruction, bounds detector should be employed.
Consequently no additional memory word is used for storing
the signature; instead, the signature bits are encoded with the B. Partitioning Concepts in Detail
branch address. Fig. 2 contrasts the memory overhead of using In order to ensure that there is only one valid sequence of
only signature embedding with that of using signature hashing. instructions between the entry point and each exit point of a
Fig. I(b) shows the same program as in Fig. 1(a) but with block, the control flow of the application program must be
BAH used. analyzed. All possible valid sequences of instructions of an

At compile time, branch address hashing causes the branch application program can be represented by a directed graph,
address in the object code to be incorrect. However, at runtime called the program graph. Each node in the graph represents
the runtimne generated signature is used to rehash the hashed a single instruction and each arc represents valid control flow
branch address. If the runtime generated signature is error between two instructions. Checking of control flow involves
free, then the rehashing will return the branch address to its verifying that the sequence of instructions executed by the
original correct value. This rehashed correct address is then processor corresponds to a path in the program graph. For
used by the processor. example, given the program in Fig. 3(a), the instruction

266 IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 3. MARCH 1987

INST. SOURCE

NUBR CODE
~, 2

I. SUC2 114d c. b
NI1W. SOURE c suht d.b4 4 br fifth

q f third: coop bbeq first 5 6 e ond : beq f rst

2 coup s.b 0 comp a b 7 5@oDGlb firs
3 first: beq second beq second T nulL €.d

a dd c.d f 4dd c.d boep d.sn
6 co p d.b 7 bn second
S beq second 9 10 f or .f7 d d 1 . e

1 ! f i r s t : o rn; f~ h

I aeol :dd 1. 0 12 br third

0 sec*d: add 1.f g 13 fifth: and s0b

((b() 14 br third

Fig. 3. Example program graph. (a)

sequence given in Fig. 3(c) corresponds to a directed path, 2- ('

b-3-c-4, in the program graph. A node in a program graph is]
called a merge node, as in [191, if it has more than one / /
incoming arc. By disconnecting from every merge node all of 0.,
its incoming arcs, a program graph is partitioned into a ,
collection of disconnected subgraphs. As Jcng as the original /
program graph has at least one merge node, it can be shown 1,
that each subgraph is connected and contains exactly one
merge node of the original program graph. Because incoming I
arcs to merge nodes are removed, each node in a subgraph has ' /
one and only one incoming arc, except the merge node which
has none. Using this and the fact that each subgraph is
connected it can be shown that each subgraph is a rooted tree \ .,
with the merge node being the root node and all the arcs being
directed away from the root node.

With such a partition, each subgraph corresponds to a set of\.,.,
instructions or a subprogram. These subprograms are similar
to the blocks mentioned in the previous subsection. Each such
subprogram has exactly one entry point, corresponding to the
merge node, and one or more exit points, including but not
necessarily limited to the leaf nodes of the subgraph tree. Since
each subgraph is a tree, there is a unique path, and hence a
unique sequence of instructions, from the entry point to each
of the exit points. The instructions associated with each path
can ie cyclically encoded into a signature which can be stored
at the corresponding exit point. Control flow through a
subprogram can be checked by checking the signature at each
exit point of the subprogram. (Cl

Without loss of essential control flow information, the X D Nm INST

program graph can be compacted into a streamlined equivalent I Bove s.b entry 3 beq first tstry/exit

graph called the controlflow graph (CFG). Each subgraph of -vt d.b coup d'.sbr t h b sco nd exit

the program graph is represented as a single node in the CFG. ar fifhb hin ec exitad .h or C t eilt

Arcs in the CFG represent valid control flow between br thrd s.

subgraphs. Each arc also corresponds to an exit point of a 2 oop &.b ,,,../,,let 4 cop f.b utry
br third exit

subgraph, represented by the source node of the arc, and hence d)

has a signature associated with it.
An example of a program segment and its corresponding Fag. 4. CFG construction from the application program.

program graph and CFG is shown in Fig. 4(a), (b), and (c),
respectively. In Fig. 4(d) the set of instructions comprising was partitioned into subgraphs. As a result, this arc exists as a
each subprogram is shown. Instructions correspondiqg to loop in the CFG and not as an arc in the subgraph.
entry and exit points are noted. Notice that there exists valid
control flow between instructions 4 and I in node 3, creating C. Generation and Embedding of Signatures
what would appear to be a cycle in the subgraph represented The actual partitioning of a program into subprograms and
by this node. However, the arc representing control flow from the generation of signatures for each subprogram can be
instruction 4 to instruction I was removed when the program performed by the assembler and loader such that it is

"HUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING 267

ompletely transparent to the application programmer. Addi- iST ORICIIAL SOURCE OBJECT CODE
OBJEC CODECODE /EMBEDDINGions and modifications to both the assembler and the loader AwBER AN KAS ,i zc

re needd. The assembler must identify all the instructions o ab 2fmb

orresponding to merge nodes in the program graph and 2 Sdcb ,o c.b Sdcb
artition the program into maximum-sized subprograms. The 4 00b ' bI d.b 0OOC

4 6000 O00c hr fifth 6000 O0

ssembler next needs to identify all of the instructions 6 77&b third. oup .b 77 b OiW
6 100 0006 second~beq first G I oO'Jgjdjorresponding to exit points of each subprogram and reserve 7 bcd Suit C.A abed

nemory locations in the object code for storing the signatures. 9 27da co d .m u- ,
0 6200 fff bbs second 6200I ~

,fter the object code has been relocated, the loader must then 10 bief ,or e.f bl* UW
11 77fb first comp f.b 77fb

,enerate a signature for each exit point and embed or hash it 12 6000 b hr third 6OODNag):'
nto the program code. It may place the signature next to its 13 ab 1ffh mnG .ir 60 , .

14 6000 fff4 hr t~hird 6000 I b¢sm/

,xit point or place.information in the program code linking the (a) (b)
xit point to its signature. A mechanism must be provided to

-nsure that the signature, or the linking information, will not F 5. Prograr code wih signatures and hashed branch addresses.

)e executed by the processor as a normal instruction.
As an example, the program of Fig. 4(a) has its object code

riodified from that shown in Fig. 5(a) to that shown in Fig. PIeg~au .1o P eipheo,

5(b). In this example extra space is created by the assembler in
he object code immediately after the exit point instructions 5
and 10. The remaining exit point instructions, 6, 9, 12, and
14, are branch instructions and so have their branch addresses
hashed. Each of the signature embedding locations is then Mlonitoring is
filled by the loader with the signature of the path associated d4
with the exit point. The words in solid boxes in Fig. 5h) are
the embedded signatures. Those in dashed boxes are hashed Fig. 6. Generic SIS system configuration.
branch addresses.

Mbits in size, that are addressed based on the values of three
D. Typical SIS Monitoring Scenario function code lines. The four address spaces are: user program

In a self-monitoring SIS system, monitoring hardware is and data spaces, and supervisor program and data spaces. Both
added to the processor as shown in Fig. 6. During normal program spaces are read only: Instruction op codes, immediate
operation, while the processor fetches instructions from the ddta, absolute addresses, displacements, and data referenced
program memory, the monitoring hardware encodes these via program counter relative addressing modes all reside in the
instructions into the runtime signature register. The monitor- program space. All other information resides in the data space.
ing hardware also detects the occurrence of an exit point There are 19 registers internal to the MC68000: a status
instruction. When such an instruction is detected, the signature register, a stack pointer register, a program counter, eight
in the runtime signature register is compared to the embedded address registers, and eight data registers.
signature fetched from program memory. After each success- Each MC68000 instruaion consists of one or more instruc-
ful comparison the runtime signature register is reset and the tion words. The first instruction word is the op code word and
signaturing of a new instruction sequence commences. A all succeeding instruction words are extension words. Exten-
mismatch of signatures indicates the occurrence of a control sion words contain such information as operand addresses and
flow error. When a control flow error is detected, the immediate data which cannot be included in the op codeword.
monitoring hardware will signal the processor by generating The word size is 16 bits. It is not possible to differentiate
an interrupt to the processor. The processor can then invoke an between the fetching of an op code word and an extension
error handling routine or notify other fault tolerant hardware word by using the information supplied at the IC package pins
in the system in order to recover from the error. of the MC68000 processor chip at the time of the fetch. The

MC68000 processor always performs prefetching of the next
III. MC68000 lMPL EMNTA'nON instruction word.

This section presents the implementation of the SIS concepts
for an actual processor, namely the Motorola MC68000. B. Modifications to the Assembler and Loader

Based on the implementation details presented in this section, The existing MC68000 assembler and loader have been
a self-monitoring MC68000 incorporating SIS has been modified to support SIS requirements. The original assembler
designed and built. This demonstration system is fully has been modified to enable it to construct the CFG of an
functional, application program. It does this by adding extra information

A. MC68000 Features to each entry in the symbol thn,,. The extra information
increases the storage space required by the symbol table by

The MC68000 is a general-purpose processor with an 50 percent. The assembler depends heavily on the use of labels
external 16-bit data path and an internal 32-bit data path. Its to indicate potential merge points. In addition, the assembler
address space is broken up into four distinct spaces, each 16 allocates memory locations in the object code for the embed-

268 IEEE TRANSACTIONS ON COMPUTERS. VOL C-36, NO 3. MARCH I97

ding of signatures and hashed branch addresses. The modifica- PSEUO BANCH

tions resulted in an expansion of the assembler code from
54000 bytes to 68000 bytes, a 26 percent increase. The Unco.lonallbh.place.nt

original assembler was a two-pass assembler. It now requires 3rch *2 btI s

three passes. Ebd Signature

Signatures cannot be generated until relocation of the objecti i

code has been performed as relocation alters some of the bits
in the object code. The signatures are 16-bit cyclic codes,
using the generator polynomial x16 + x12 + X3 + x + 1. This Fig. 7. Implementation of the embedded signature.
primitive polynomial was chosen because it has relatively few
terms which tends to reduce the amount of hardware required 1,s1MUCTIO, SOURCE OBJtCT

in the linear feedback shift register implementation. A routine CODE CODE

is added to the loader to generate signatures and then either long branc bra(16) 6000 MVY

embed or hash them into the objzct code once relocation has lon subr. call WOO) 6100 T.YY

been completed. This process requires an arbitrary number of con. long breach bcc:6) EzoC yfy-

passes depending upon the branching structure of the object jump lap 4M Yr"

code. Typically, for code produced by a compiler, the number call)or 4EAX YYY

of extra passes is two. For hand written assembly code this 4Ex fYrr

number is usually one. Modifications to the loader resulted in
an expansion of the loader code from 23000 bytes to 31000 YYYY - 1,.be iraCb Aidrss

bytes. The entire signature embedding process is transparent Fig. 8. Possible BAH MC68000 instructions.

to the user.
The embedded signatures must be fetched from program monitoring processor with SIS, the monitoring hardware is

memory so they may be used by the monitoring hardware. made capable of pushing the current state of the runtime
However, the embedded signatures must be prevented from signature register onto a signature stack. Signaturing of the
being executed as instructions by the processor. This is interrupt service routine is performed as though it were a
accomplished in the following way. Following each exit point separate program. When the interrupt service routine is
instruction, a one-word unconditional branch instruction with finished, the monitoring hardware pops the previously stored
a branch displacement of two bytes, henceforth referred to as a signature off the stack and resumes signaturing of the
pseudobranch instruction, is inserted in the program code. interrupted program.
The 16-bit signature is then stored in the word immediately Both the modified assembler and loader are fully functional
following the one-word pseudobranch instruction, see Fig. 7. and a number of example programs have been assembled. The
As it is executed, the pseudobranch effectively causes the memory overhead required due to signature embedding for
MC68000 to skip over the next word, that is, the word three example programs is illustrated in Table I. As can be
containing the embedded signature. However, because the seen from this table, for typical programs with 25 percent
MC68000 always performs a one word prefetch, the signature branch instructions, a quite reasonable 10 percent memory
will always be fetched from memory. The monit',ring hard- overhead can be expected. If the instruction format of a
ware uses the bit pattern of the pseudobranch instruction as a processor is designed with SIS take-n into consideration, this
flag indicating that the next word to be fetched is an embedded memory overhead for signature embedding can be signifi-
signature. As it is fetched, the signature is latched by the cantly reduced.
monitoring hardware and used for signature comparison.

Frequently the exit point of a subprogram is a return from C. Monitoring Hardware
subroutine (RTS) instruction. In the case of an RTS instruction The SIS monitoring hardware consists of eight functional
the pseudobranch instruction can be omitted and the signature units: a prefetch queue, a signature generator, an address
can be embedded immediately after the RTS. In this case, the rehasher, an op code decoder, a signature stack, an out-of-
monitoring hardware must be designed to also recognize the program bounds detector, a program counter emulator, and a
bit pattern of the RTS instruction, controller. Refer to Fig. 9 for an illustration of the hardware

For exit points which are branch instructions with 16-bit during the subsequent explanation of its operation.
branch addresses, BAH can be used instead of signature 1) Normal Operation: The normal operation of the
embedding to reduce the memory overhead. MC68000 in- processor involving the monitoring hardware is outlined
structions for which BAH can be performed are listed in Fig. below. First, the MC68000 places an address on the address
8. Of course the monitoring hardware must be made capable of bus. The out-of-program bounds detector checks this address
recognizing all of these instructions so as to perform the against the values of the upper and sower program bounds
branch address rehash when a hashed address is fetched. stored within it. If either of these bounds is exceeded, an error

Interrupts produce control flow which is not deterministic at is signalled. Otherwise, data are placed on the data bus and
compile time. Such control flow can occur at arbitrary pass unaltered through the rehash unit. If an op codeword is
locations within the program, causing temporary suspension of fetched, the op code decoder determines the length of the
that program's execution. To allow interrupts in a self- instruction. This is so that the monitoring hardware can

SCHUETTE AND SHEN- PR ..ESSOR CONTROL FLOW MONITORING 269

TABLE I runtime signature register contents become zero. Thus only
SIS MEMORY OVERHEAD zero detection hardware is needed for error checking. This

MC e6Soo PROGRAM 1 2 a also removes the need to clear the signature register after

PROGRAM SIZE WITHOuT SIS (In bytes) 1176 2759 4387 checking is performed.
Long branches have their branch addresses in extension

PR OGAM sIZE WIH sIs (I,, bytes) 1298 3019 4785 words. All such branches have their branch addresses hashed.

I RACH INSTRUCTIONS (ncl. ris) 26.2 23.7 22 3 When the op code decoder signals that a long branch op code is

% MEMORYV OVERHEAD 10.3 9.4 9.1 being fetched, the controller directs the rehash circuit to
rehash the next word fetched from program memory using the
contents of the signature register. Since the next word fetched
from program memory is the hashed branch address, it will be
rehashed to its correct value if no errors have occurred. To

>- keep the contents of the program counter emulator consistent
with the processor's program counter, the monitoring hard-

ware must detect when a branch is actually taken by the
program. This is accomplished by comparing the contents of
the program counter emulator with those of the address bus

•kt "after a long branch instruction is executed. A mismatch
indicates that a branch has been taken. The program counter
emulator is then loaded with the new program counter value.

)No additional action is taken otherwise.
O& Short branches have branch addresses located in the op

codeword. It is difficult to detect such instructions and rehash
their branch addresses before the processor receives the

co instruction word. Therefore, branch addresses of short

branches are never hashed. Consistency of the program
counter emulator contents is maintained in the same manner

C0 0 <for long branches.
PConditional short branches to the program counter + 2 are

Naltered to conditional short branches to the program
Fig. 9. The SIS monitoring hardware. counter + 4 with an NOP inserted. The reason being that the

monitoring hardware is unable to determine whether or not
branching occurred for branches to the program counter + 2.

determine when the next op codeword will be fetched. In Due to prefetching by the MC68000 the fetching sequence of
parallel with the data bus contents being latched by the subsequent instruction words will be the same in both cases.
MC68000, they are also latched by the prefetch queue within 3) Exceptions: Occurrences of exceptions are recognized
the signature generator of the monitoring hardware. The by the monitoring hardware controller when the processor
purpose of the prefetch queue is to prevent words from being executes a unique sequence of memory fetches. When an
encoded by the signature generator until the MC68000 has exception occurs, the contents of the signature register are
actually used them. Exceptions may prevent prefetched words pushed onto the signature stack and the signature register is
from being used by the MC68000. As each instruction word is cleared. When the first word of the exception routine is
fetched, the contents of the program counter emulator is fetched, the program counter emulator is loaded with the
incremented. The fetch of the next instruction word is detected contents of the address bus and incremented immediately.
when the contents of the program counter emulator match that Signaturing and checking of the exception program follows.
of the address bus. Interrupts are a special class of exceptions and are handled

2) Branch Instructions: The fetching of branch instructions similarly.
requires additional actions from the monitoring hardware. 4) Return from Exception and Return from Subroutine:
Different actions are required for pseudobranches, short The return from exception (RTE) and return from subroutine
branches, and long branches. A pseudobranch is used to (RTS) instructions require special actions. The word in
signify the embedding of a signature and to prevent the program memory immediately following the RTE/RTS in-
processor from executing the embedded signature as an struction is always an embedded signature. When the op code
instruction. Whenever the op code decoder indicates that a decoder signals that an RTE/RTS is being fetched, signature
pseudobranch instruction is fetched, the next word fetched checking is done in the same manner as with the pseudo-
from program memory will be a signature. After the signature branch. In the case of the RTE instruction a Pop operation is
is fetched it is immediately encoded by the signature genera- performed on the signature stack after checking is done. The
tor. The 16-bit bit pattern stored as the embedded signature is program counter emulator is loaded with the address of the
actually the inverse of the cyclic code. Hence, if no error has first instruction fetched after the embedded signature is
occurred, the encoding of the fetched signature will make the fetched. Most exception processes are terminated with an RTE

270 IEEE TRANSACTIONS ON COMPUTERS. VOL C-36. NO 3. MARCH 1'47

instruction. To simplify the hardware, the execution of an determining when an instruction should be used as input to the
RTE instruction always causes a Pop operation to be performed signature register. If the processor does not have prefetching.
on the signature stack. Thus, returns from interrupt exceptions then a technique other than the use of pseudobranches to
do not have to be differentiated from other returns from permit signature embedding will be needed.
exceptions. As a result, all exceptions cause the signature
register contents to be pushed onto the signature stack. Our IV. ERROR COVERAGE ANALYSIS

current implementation will not support a multiprocessing Transient errors are not very well understood. Hence,
environment where returns from interrupts do not return the determination of transient error coverage based on an analvti-
processor back to the interrupted routine. cal model is difficult. However, attempts have been made to

5) Status Register Altering Instructions: Instructions analyze error coverage analytically using very restrictive error
which use the processor status register as their destination models [13], [14]. The accuracy of these error models may be
operand cause the MC68000 to do an instruction refetch. difficult to verify. An allernate means of determining the
When the op code decoder indicates that such an instruction transient error coverage is by simulation. This requires the
has been fetched, the next program fetch is ignored by the availability of a logic simulator and detailed models of the
monitoring hardware. The word is not encoded by the hardware in the system, the MC68000 in particular. Such
signature generator nor is the program counter emulator models were not readily available at the time the experiments
incremented. Upon refetch of the word, normal operation is were performed.
resumed. An assessment of the error coverage can be obtained using

hardware fault insertion experiments. Hardware fault insertion
D. Overhead Summary experiments have been used previously 116]. This is the

A self-monitoring demonstration system, based on SIS and a approach used for determining the error coverage of the SIS
4 Mhz MC68000 processor, has been designed, constructed, approach. A general-purpose fault inserter (GPFI) was de-
and is fully functional. The SIS monitoring hardware realiza- signed and built to insert faults into the self-monitoring
tion requires a total of 172 TTL SSI/MSI packages. The MC68000 demonstration system. The GPFI required only
realization requires 3947 gates and 5435 bytes of memory. three months to design and build. It uses a single board
Compared to the approximately 23000 gates of the MC68000 microprocessor and a small amount of custom built hardware
processor, this represents an overhead of 17 percent in gate which consi~ts of 49 MSI/SSI chips with a total gate count of
count and a higher overhead when including memory. The SIS approximately 1200 gates. The results of the fault insertion
hardware is highly modular, making it amenable to implemen- experiments are analyzed to show the significant improvement
tation on a single LSI chip or on the processor chip itself. Such in transient error and intermittent fault coverage by incorpo-
an implementation would allow the SIS hardware to have a rating the SIS approach into an MC68000-based system.
minimal impact on the system interconnect. Much of the Analytical results are obtained which show the effeci of SIS on
memory overhead is unnecessary if the monitoring hardware is the overall reliability of the system.
incorporated on the MC68000 chip or if the start of an
instruction fetch were readily identifiable from information at A. The Fault Inserter
the MC68000 pins. The basic clocking rate of the processor is A programmable hardware fault inserter has been designed
unchanged because the added SIS hardware is not in any of the so that the faults inserted could be selected based on several
critical delay paths. Processor performance degradation, due parameters. Faults are inserted on the external data, address,
to the added pseudobranch instructions, is estimated to be and control busses of the MC68000 chip. Each fault can be
about 10 percent although this number is highly program inserted on any one of 11 data, address, and control sines. The
dependent. If SIS is considered in the original design of the duration of the fault can be selected to be 1, 2, or 4 bus cycles.
processor, these overhead figures can be significantly re- Insertion of the specified fault can be initiated when a
duced. preselected address appears on the MC68000 address bus or a

Although the SIS monitoring hardware was implemented for selected number of bus cycles later. If an error caused by the
the MC68000, it should be easily extendible to other proces- fault is detected, then the fault inserter is able to record the
sors as well. The only portions of the SIS monitoring hardware detection mechanism, either one of the already existing
that are MC68000 dependent are the op code decoder and the MC68000 mechanisms or the SIS monitor, based upon
prefetch unit for the signature generator. The main purpose of information supplied by the monitored MC68000. The fault
the op code decoder is to allow the SIS monitoring hardware to inserter is also able to record the error detection latency, that
determine when a new instruction begins in the program is, the time from when the fault is inserted to the time when it
memory so that special instructions, like the pseudobranch, is detected.
can be identified. The op code decoder will be less complex Fig. 10 illustrates the incorporation of the GPFI into the
for processors which provide direct external information MC68000 system. The GPFI is interposed between the
concerning the start of an instruction fetch. The prefetch unit MC68000 processor and its memory. Thus, faults are inserted
may be more complicated depending on the size of the prefetch on the various busses prior to reaching the address decode
queue in the monitored processor. A larger prefetch quLue will circuitry. Specification of the faults to be inserted is done
complicate the determination of whether an instruction has through a terminal interface provided by the single-board
been executed or not. This is important for purposes of microprocessor. This microprocessor is also linked with a

SCHUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING 27l

WAMW the operand is used in address calculations; and 6) faults in the
Wwv. IS W4"00 external address bus.

4) Data Cycle-Address Bus Faults: Faults inserted on the
address bus. while an operand word is read or written, model:
1) faults in the external address bus; 2) multiple faults on the
internal and external data bus, memory, and memory select
circuitry; 3) faults in the PCU and op code decoder which
cause incorrect address calculations; 4) faults in the PC and
data registers if they are used in calculating the current

GF address; and 5) faults in the address bus section of the BIC.
Fig. 10. Incorporation of the GPFI in the MC68000 system. 5) Instruction Cycle and Data Cycle-Control Bus Faults:

Finally, faults inserted on the control lines model: I) faults in
VAX* 11785 to permit permanent storage of the fault the memory and memory select circuitry; 2) faults in the PCU
insertion results. that prevent adherence to proper bus protocol; and 3) all of the

faults listed for the address bus faults.
B. Similarity of Inserted Faults to Actual Faults 6) Other Classifications: Many faults were inserted with a

Before making comparisons between the inserted and actual duration that spanned several bus cycles. These can be
faults, the basic structure of the monitored system must be considered to be composed of a series of the above type of
examined. For purposes of this examination, it is assumed that faults. Such faults which have an instruction cycle fault as one
the monitored system is composed of only the MC68000 or more of their components will be referred to as instruction-
processor and its memory. It is not expected that the inserted type faults. All other faults will be referred to as data-type
faults will closely model faults in peripheral devices, faults.

The MC68000 can be assumed to consist of a data and a
control path. The data path consists of the ALU, data C. Fault Insertion Experiments
registers. The control path consists of the op code decoder, Fault insertion experiments have been performed involving
controller, and program control unit (PCU). The PCU the insertion of 2891 faults. Five benchmark programs
contains the bus interface circuitry (BIC), program counter constituted the software that executed on the MC68000 while
(PC), instruction prefetch queue, and a controller. The PCU the faults were inserted. These benchmarks include the string
contains circuitry for address calculations. The PCU is search, bit set, linked list insertion, quicksort, and bit matrix
assumed to be responsible for the reading and writing of transposition programs given in [8].
operands and instructions. Interrupt handling and bus arbitra- The fault insertion experiments can be divided into two sets.
tion circuitry will not be considered because the inserted faults The first set was performed with the SIS monitoring hardware
will not closely model faults within these units. in operation. A second set of experiments was performed with

1) Instruction Cycle-Data Bus Faults: Faults inserted on only the MC68000 operating. The MC68000 has several error
the data bus, while an instruction word is being read, model detection mechanisms built in which cannot be disabled. The
faults in the memory and external data bus. They do not model primary purpose of this second set of experiments was to
faults within the MC68000 because the inserted faults appear determine the degree to which the MC68000 error detectiz'n
external to the MC68000. There they can be directly observed mechanisms affected the fault coverage obtained in the first set
by the SIS monitoring hardware. of experiments. A secondary purpose was to determine and

2) Data Cycle-Data Bus Faults: Faults inserted on the data evaluate the error coverage of the MC68000 built-in error
bus, while an operand word is being read or written, do model detection mec., inisms. Approximately half of the faults
faults internal to the MC68000. This is due to the fact that the inserted in the first and second sets of experiments were
SIS hardware does not mt tor the data bus at this time. Actual identical in terms of location and time of insertion within the
faults that are modelled include: I) faults on the external data benchmark programs. These identical faults are used in an
bus and memory; 2) faults on the internal data bus and the data attempt to decouple the effect of the MC68000 error detection
bus section of the BIC; 3) faults in a data register, if a data mechanisms on the results obtained for SIS.
register is being written to or read from; 4) faults in the PC or The locations within the benchmarks at which faults were
address calculating circuitry, if the operand is used in inserted were chosen at random. All lines were faulted in turn
determining a branch address; and 5) faults in the ALU, if the at each location. Only single faults were inserted. Typically,
operand is used by the ALU or is the output of the ALU. only one duration was selected for all faults inserted at a given

3) Instruction Cycle-Address Bus Faults: Faults inserted location. A fault's type was not predetermined, but depended
on the address bus, while an instruction word is being read, upon the instruction mix of the benchmarks and the randomly
model: I) faults in the PC and address bus section of the BIC; selected time at which the fault was inserted into the
2) faults in the PCU that cause incorrect address calculations; benchmark programs.
3) multiple faults in the op code decoder or controller that
cause the instruction to be misinterpreted; 4) multiple faults in D. SIS Error Detection Results and Analysis
the external data bus, memory, and memory select circuitry; 1454 faults were inserted with the SIS monitoring hardware
5) multiple faults in the PC or address calculation circuitry, if in operation. 1124 of these turned out to be instruction-type

272 IEEE TRANSACTIONS ON COMPUTERS. VOL C-36. NO. 3. MARCH 1987

TABLE 11 TABLE III
FAULT COVERAGE AND DETECTION LATENCIES WITH THE SIS MONITOR DETECTION LATENCIES OF DATA-TYPE FAULTS

FAULT Number imber S Avg Latency Std Dev Llne Faulted Number Number Avg. Latency
DURATION Inserted Detect.d DeL. (in $a) (In pS

2
) Inserted Detected (in p;)

I cycle 517 343 66 5400 61.000

2 cycles 462 402 87 5200 60.000 DO 30 9 372

4 cycles 475 442 03 1400 27.000 D7 30 10 499
D8 30 6 1219

BUS TYPE D15 30 8 417

lst 1124 1007 8 38 3i Al 30 11 828

Data 330 g0 27 52.000 180.000 A4 30 6 444

A8 30 7 1894
LINE FAULTED A12 30 15 294.000

DO 132 110 83 74 210 LDS 30 8 550

D7 132 111 84 79 230 UDS 30 6 452

Do 132 106 so 01 480 DTACK 30 4 602
D15 132 108 82 a5 190
Al 132 112 85 110 410
A4 132 103 78 65 200

A8 32 104 70 10 1000

A12 132 115 67 39.000 160.000

LDS 132 108 62 41 190

WS 134 105 78 s0 200 20
rACK 132 105 80 79 190

TOTAL/AVERAGE 1454 1187 82 3800 51.000
ISO

Pduffbor of
faults

faults. 1097 of the 1124 instruction type faults were detected, deece too

representing a fault coverage of 98 percent. Most instruction-
type faults result in control flow errors, thus SIS provides a
good control flow monitoring capability as it was intended. In
addition to providing a high degree of coverage for instruc- , ,
tion-type faults, SIS detects the errors due to such faults with a
very short detection latency. The average detection latency, or *a .- U * ,
mean time to detect (MTTD), for instruction type faults is only F kwDitun of o38 to t

38 ps. Considering all 1454 faults, a total of 1187 faults were

detected, representing a 82 percent fault coverage for all fault
types. When all faults are considered the average detection nisms, the board on which the MC68000 resides provides 'is
latency is 3.8 ms with a large standard deviation, timeout circuitry to detect the absence of a memory respor s'

Table 1I shows how the fault coverage and detection latency during a bus cycle. The aggregate of these mechanisms
vary with duration, the type of line faulted, and the fault type. referred to as the MC68000 error detection mechanisms.
There is a heavy dependence on the fault type and duration of 790 faults were inserted at identical locations and times in
the fault but very little dependence on the line faulted. The the first and second sets of experiments. Fig. 12 shows a
average detection latency of SIS is significantly increased by breakdown of the detection mechanisms for these faults in both
the detection latencies of the data-type faults. In fact, data-type the first and second sets of experiments. The first column
faults which affect line A12 make the primary contribution to states the means of detection for faults inserted in the first set
the longer average detection latency of the data-type faults. of experiments. The second column states whether or not
Table I shows this influence. Data-type faults on line A12 are errors caused by the fault were detected by the MC68000 in
more likely than faults on any other lines to cause references to the second set of experiments. The category where the errors
locations outside of the region where program data are stored. caused by inserted faults are detected by the MC68000 in both
If the faults inserted on line A12 are not considered, then the experiments is broken into three subcategories: thc;e which
average detection latency for all faults is only 81 ps. took greater, lesser, and the same amount of time to detect in

Fig. I I shows the distribution of the detection latency when the first set than in the second set of experiments.
the SIS monitoring hardware is in operation. Notice that the 638 faults were detected in at least one of the two sets of
vast majority of the detection latencies for the instruction-type experiments. Of these, 281 were detected by SIS in the first set
faults are less than 100 Us. The detection latencies for the data- of experiments. The MC68000 error detection mechanisms do
type faults are concentrated in two groups: one in the 20-60/ s not affect the detection of a fault by SIS. Therefore, these
range and the other in the z 100 us range. faults would have been detected by SIS if the MC68000 error

detection mechanisms had been disabled. The detection
E. Decoupling MC68000 Error Detection Mechanisms latency of 254 faults was changed by SIS. In this case, SIS at
from SIS least had some influence on the detection of these faults.

The MC68000 was designed with several error detection Although they may not have been eventually detected by SIS,
mechanisms built-in to the processor. Examples of such there is some indication that they were not transparent to SIS.
mechanisms are the address error, illegal op code, and line The most likely cause of the change in detection latency is the
emulator detection mechanisms. In addition to these mecha- branch address hashing (BAH), used in SIS. The remaining

SCHUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING 273

XIM.RE I EXPERIMNr 2 NUNBER EXPERIMENT I EXPERIMENT 2 percentage of faults and significantly reduces the average
(8/SIs) (W/O SIS) VrTECTW LATENCY LATEcY detection latency of most fault types.

D itCT B vmTciTto nv_______________ W ByThis data shows that the fault coverage varies directly with
.CeGo MCO0M0 103 l0,,' lei' the duration of the fault. This is to be expected since faults of

1elo M"O ") longer duration cause more errors. The fault coverage also
(greater latelcy) depends heavily upon the bus cycle type of the fault. The

"Ceew MC68000 02 210ps$ 170i's
les.. Ilatcy) MC68000 detection mechanisms are better suited to detecting

sis ,c6eo 122 9 as, 23 Ong instruction-type faults than data-type faults. Not only are moreaNe C6000 7 ,51 O, instruction-type faults detected, but they are detected much
NSCOO NONE 38 29#. - faster.
mis MOVE 1SO 63ps - Faults on the DTACK line are difficult to detect. A possible
sm- -n 252 - explanation for the difficulty in deteecting the DTACK faults is

that they merely cause the MC68000 to read from the memory
Fig. 12. Detection breakdown for experiments I and 2. a clock cycle earlier. As long as the memory has valid data at

its outputs at this time, no error will occur. Errors will still be
TABLE IV caused during write cycles since the write cycle time require-

FAULT COVERAGE AND LATENCIES FOR THE MC68000 ment will not be observed.
FAULT Number Number S Avg. Latency Std Dev

DURATION Insertedetected Dt. (in p) (in2 852) G. Analysis of Effects on System Reliability
1 cycle 403 202 41 13.000 s.ooo The effect of the SIS monitoring hardware on the reliability2 ycles 404 298 at 12.000 70,0004 cycle 46 313 s 1,000 70.000 of the system can be determined analytically. The analysis

SUS TYPE presented here uses a simple error model. The use of more
complex and accurate models can be used once further studies

10 7240 400o 2o.000 have been performed. The assumptions used in this analysis
bats, 384 60 23 82.000 200.000

LINE FAULTED are listed below.
1) The system consists only of an MC68000, its associated

D7 131 78 Go 1200 900 program memory, and the SIS monitoring hardware.
Do 131 63 40 1600 10.000 2) The SIS logic gate and memory overhead constitute
D15 130 81 62 210 i0Al 131 72 CS 450 060 approximately 17 percent of the logic gate and memory count
A4 131 67 51 24.000 110.000
A 12 76 60 1600 10.000 of the MC68000 and its program memory.
A12 131 04 72 95.000 210.000 3)T
US 131 07 73 go 520 3) The MC68000, the program memory, and SIS monitor-
Ws 130 02 71 51 200 ing hardware are assumed to have constant failure rates.
DTAOC 131 14 11 43.000 100.000 4) The failure rate of a hardware module is a direct function
TOTAL/AVERAGE 1437 831 e 13.000 82.000 of its gate count.

5) The failure rates of the MC68000 and SIS monitoring
103 faults were unchanged in their detection latencies in both hardware are independent.
experiments. The fact that they were transparent to SIS is 6) All detected errors are assumed to be recovered from.
likely to be due to their extremely short detection latency, 19 Let R(t) represent the reliability of the MC68000 with no
s, by the MC68000 error detection mechanisms. Further detection mechanisms, that is R(t) is the probability that an

analysis and collection of data needs to be done in order to error will not occur before time t. Let E represent the error
accurately assess the influence of the MC68000 error detection coverage of the system with SIS. F represents the relative size
rechanisms on the fault coverage obtained in the first set of of the SIS monitoring hardware with respect to the size of the
experiments. MC68000. The reliability of the SIS monitoring hardware is

then RF(I).
F. MC68000 Error Detection Results and Analysis In addition to the overhead for the SIS monitoring hard-

1437 faults were inserted with the MC68000 operating ware, there is also overhead associated with the recovery
without the SIS monitoring hardware. Of the 1437 faults, 831 hardware. A determination of the recovery hardware overhead
were detected by the MC68000 detection mechanisms, repre- has been made for incorporating SIS in a processor that is
senting a 57 percent fault coverage. The average detection being designed at IBM-Federal Systems Division [1]. Based
latency was 13 ms with a large standard deviation. This on this investigation, we estimate that a similar recovery
average detection latency is over four times the detection scheme for the MC68000 will require about 8 percent
latency when SIS is operating. Table IV shows how the hardware overhead. This overhead must be added to the
detection percentage and latency vary with duration, the type overhead of the SIS monitoring hardware in determining the
of line faulted, and the fault type. It can be concluded that system reliability. The reliability of the entire system is then
unlike most commercially available microprocessors, the system reliability = R(t) * RF(t) + (I - R(t)) * R'(t) * E.
MC68000 has reasonably effective fault detection mechanisms
built in. However, comparing the distributions with and Fig. 13 shows a plot of the reliability of the MC68000 with
without SIS operating shows that SIS, detects a much higher and without the SIS monitor incorporated, forE = 0.82 and F

274 IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 3. MARCH 1987

-c -necessary since the actual program counter can be used. Ano., :-,-.on-chip implementation of SIS would require approximately

7 -. "2000 nMOS gates. This is equivalent to an overhead of
R oisa t- .. - approximately 9 percent of the silicon real estate. Because of, 0.5- the modularity of the SIS hardware, the impact of this added
0.3 -3 overhead on the routing area should be commensurate with the.......... ----- gate overhead.

a 0.s 1 1.s 2 25 3 35 asFig. 15 shows the reliability of a self-monitoring processor
I,,e/f-,kn with on-chip implementation of the SIS monitoring hardware,

Fig. 13. System reliability, assuming independence of errors in the SIS monitoring
hardware and the MC68000 and that E = 0.82 and F = 0.09.9 ,.+ 0.08 = 0.17. It is also conservatively assumed that there is

0.9 - no increase in the error coverage. Since some of the circuitry
. """is shared between the SIS monitor and the MC68000 in the on-

,,' "-"-- chip implementation, all errors will not be independent. This
0.2 :.-. --- will cause the reliability of the system to be somewhat less than

.. - - . that shown. This effect will be counteracted by an expected
0 0 L . 2 2 S , increase in the actual error coverage due to the on-chipa-.-1 .2 .5 3 .6 4implementation.

Fig. 14. System reliability with varying error coverages. B. Roving Monitoring
A second and related approach for doing control flow

= 0.17 + 0.08 = 0.25. It can be seen that SIS provides a monitoring has also been developed, called asynchronous
significant enhancement in the overall system reliability. Less signatured instruction streams (ASIS) [7]. With ASIS a small

than 100 percent error recovery coverage can be reflected in amount of hardware, called a hardware signature generator, is
reductions of the errol coverage. Fig. 14 illustrates the effect dedicated to each application processor. A second hardware
of reductions in the fraction of recoverable errors by reducing unit, called the roving monitoring processor (RMP), is time

E. shared amongst several application processors to check their
control flow. Relative priorities can be assigned to each of the

V. E TENsioNs TO SIS monitored processors. The order in which signatures from the
Several extensions to the SIS approach have been pursued or various hardware signature generators are to be processed by
ebei ra the RMP can be made to reflect the relative priorities. A

are being pursued at CMU. This section briefly describes rvn oioigdmntainsse o C80 rc

some of these follow-on efforts. roving monitoring demonstration system for MC68000 proc-
essors has been constructed and is working.

A. On-Chip Implementation C. Architecture of a Roving Monitoring Processor
Enhancements to the error coverage and reduction of the Given the potential performance and cost advantages of a

overhead can be made if the SIS monitoring hardware is high-speed roving monitoring processor, an innovative data
integrated into the design of the processor chip. This would flow-based architecture for the RMP has been developed [201.
make all internal signals of the processor visible to the This architecture allows a streamlined instruction set to be
monitoring hardware and allow much of the monitoring defined which executes quickly and reduces context switching
hardware in the present design to be eliminated, overhead. It also incorporates a mechanism for efficiently

First, more internal signals can be monitored to increase managing the execution of several instruction streams and
error coverage. Activities that could be monitored include: providing high performance through pipelining. This RMP has
fetching and sequencing of all microcode instructions, internal also been constructed and is capable of simultaneously
control signal sequencing, and setting of condition codes. monitoring up to sixteen 8 Mhz MC68000 processors.
Operation of the ALU could be verified by passing known data
through it during periods in which it is idle. The results of the D. Recovery
ALU operation could then be incorporated into the signature. Issues pertaining to error recovery are being investigated
The output of a parity checker for the data registers could also [11. Work has been done by Lee, Ghani, and Heron [10 on
be signatured providing a means for checking the operation of recovery caches which with only slight modification appears
the processor registers by the monitoring hardware. to be applicable here. Basically, a recovery cache is used to

When implementing the monitoring hardware on the proces- store the current values of variables which have been altered
sor chip, much of the hardware in the present design can be since the last signature check. The contents of the cache are
eliminated. There would be no need for a separate op code written back to the main memory only when a signature check
decoder. There would be no need for a separate signature indicates that no error has occurred. This is unlike the scheme
generator prefetch queue. The signature stack can be placed in presented in [10) where the cache is used as the backup
main memory and a stack pointer added to the processor storage. By using the cache to hold the current values it should
registers. The program counter emulator would not be be possible to obtain the performance advantages of a cache

SCHUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING 275

Re liability 0.6- " " -. .

0.4-

0.1
0 I I I - --- - .- --------------

O 0.S 1 I.S 2 2.5 . 3.

Fig. 15. MC68000 reliability with on-chip SIS.

along with the- recovery capability. In addition to the cache, a 171 J. B. Eifert and J. P. Shen, "'Processor monitoring using asynchronous
set f sadowregster wold b neded o povid bakup signatured instruction streams," in Proc. 14Mh Int. Fault-Tolerant

s.t o sh ry rut e, wuue b e p. 3 9 4 - . 9 9 .
storage for the processor's registers. These could be located 181 R. D. Grappel and J. E. Hemenway, "'A tale of four microprocessors:
on the processor chip. Finally, interfaces with other devices Benchmarks quantify performance," EDN, Apr. 1981.
would have to be altered to allow for recovery attempts. More 19 V . . iyengar and L. L. Kinney "Current fault detection in

microprogrammed control units," IEEE Trans. Comput., vol. C-34,work in the recovery area is needed. pp. 810-821. Sept. 1985.

110 P. A. Lee, N. Ghani, and K. Heron. "A recovery cache for the PDP-
VI. SUMMARY I L," in Proc. 9th Int. Test Conf., Oct. 1979, pp. 3-8.oThe ocessr chip. i na ineas w thesgnred 11 D.J. Lu, Watchdog processors and structural integrity checking,"

IEEE Trans. Comput., vol. C-31, pp. 681-685, July 1982.
instruction'streams0 (SIS) on-line monitoring approach have 12 A. Mahmood, E. . nMcCluskey, and D. . Lu, 'Cncurrent fault

been presented in this paper. A demonstration system based on detection using a watchdog processor and assertions," in Proc. 13th
Int. Test Conf., Oct. 1983, pp. 622-628.the MC6000 processor has been built to demonstrate the 1131 A. Mahmood and E. J. McCluskey. "Watchdog processors: Error

practical feasibility of the SIS approach. This approach, if coverage and overhead," in Proc. 15th Fault-Tolerant Comput.
implemented on the processor chip, requires approximately 10 Symp., June 1985, pp. 214-219.

in hardware overhead. If hardware for error rcovery 1141 M. Namjoo, "Techniques for concurrent testing of VLSI processor
percent operation," in Proc. 12th Int. Fault-Tolerant Comput. Symp., June

is included, the total overhead is expected to be around 20 1982, pp. 461-468.
percent. The performance penalty depends upon the applica- 1151 M. Namjoo and E. J. McCluskey, "Watchdog processors and

capability checking." in Proc. 12th Int. Fault-Tolerant Comput.tion program and is expected to be less than 10 percent. Symp.. June 1982. pp. 235-248.
Fault insertion experiments have been performed on the 116] M. E. Schmid, R. L. Trapp, A. E. Davidoff, and G. M. Masson,

demonstration system. The results indicate that SIS provides a "Upset exposure by means of abstraction vertification," in Proc. 12th
Int., Fault-Tolerant Comput. Symp., June 1982, pp. 237-244.reasonably good error coverage of 82 percent of all fault types 17] J.P. Shen and M. A. Schuette, "'On-line monitoring using signatured

For the more critical instruction-type faults it provides an error instruction streams," in Proc. 13th Int. Test Conf, Oct. 1983, pp.
coverage of 98 percent. The error detection latency for all 275-282.
faults is relatively short and the average is 3.8 is. For 118] D. P. Siewiorek and L. K. Lai, "Testing of digital systems," Proc.

IEEE. vol. 69, pp. 1321-1331, Oct. 1981.
instruction-type faults the average error detection latency is 1191 T. Sridhar and S. M. Thatte. "Concurrent checking of program flow in

only 38 ;is. In other words, with SIS, almost all control flow VLSI processors," in Proc. 12th Int. Test Conf.. Nov. 1982, pp.
191-199.

errors caused by instruction-type faults can be detected within 1201 S. P. Tomas and J. P. Shen, "A roving monitoring processor for
a small number of instructions from where the error occurred, detection of control flow errors in multiple processor systems," in
Analytical results have been derived for the reliability of a Proc. ICCD. Oct. 1985.

1211 J. Wakerly, Error Decting Codes. Self-Checking Circuits and
system incorporating S15. These results clearly show the Applications. Amsterdam, The Netherlands: North-Holland, 1978.

benefit of the SIS approach in increasing the overall reliability 1221 S. S. Yau and F. C. Chen. "An approach to concurrent control flow
of a SIS self-monitoring system. checking." IEEE Trans. Software Eng., vol. SE-6. pp. 126-137,

Mar. 1980.

REFERENCES ___-___ .-- Michael A. Schuette (S'80-M'86) received the

Il] B. Aglieti, M. A. Schuette. and J. P. Shen, "Concurrent error B.S. degree in electrical engineering from Michigan
detection and recovery using signatured instruction streams," Dep. State University, East Lansing, in 1982. and the
Elec. Comput. Eng., Carnegie-Mellon Univ., May, 1985, Pittsburgh, U M.S. degree in electrical and computer engineering
PA, Tech. Rep. ZO from Carnegie-Mellon University, Pittsburgh, PA,

121 A. Avizienis, "Architecture of fault-tolerant computing systems," in L in 1984.
Proc. 5th Int. Fault-Tolerant Comput. Symp., 1975, pp. 3-16. During the Summer of 1981 he was employed at

(31 J. M. Ayahe P. Aze ma. and M. Diaz, "Observer: A concept for on- , Bell Laboratories,. Naperville IL, as a digital
line detection of control errors in concurrent systems," in Proc. 9th ' designer. In the Summer of 1982 he was employed
Int. Fault-Tolerant Comput. Symp.. June 1979. pp. 79-86. • , at McDonnel Douglas Research Labs. St. Louis,

141 S. Bologna and W. Ehrenberger. "Possibilities and boundaries for the MO. as a Research Assistant. In the Summer of
use of control sequence checking," in Proc. 8th Int. Fault-Tolerant 1984 he was employed at General Electric Microelectronics Center. Research
Comput. Symp.. June 1978. p. 226. Triangle Park, NC. At that time he was responsible for implementing the

151 M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of prototype of MAST. an automated design for testability tool. Currently. he is
Digital Systems. Rockville, MD: Computer Science, 1976. a Ph.D. candidate at Carnegie-Mellon University, Pittsburgh, PA. doing work

161 L. Chen and A. Avizienis, "N-version programming: A fault-tolerance in system level fault detection and tolerance.
approach to reliability of software operation," in Proc. 8th Int. Fault- Mr. Schuette is a member of Eta Kappa Nu. Tau Beta Pi, and Phi Kappa
Tolerant Comput. Symp., 1978, pp. 3-9. Phi.

276 IEEE TRANSACTIONS ON COMPUTERS. VOL. C-3e. NO. 3. MARCH 197

John Paul Shen (M*81) received the B.S. degree network. From 1977 to 1981 he performed research on trwlticomputei
from the University of Michigan, Ann Arbor, in interconnection networks in the Department of Electrical Engineering-
1973, and the M.S. and Ph.D. degrees from the Systems. University of Southern California. Currently. he is an Assistant
University of Southern California, Los Angeles, in Professor in the Electrical and Computer Engineering Department. Carnegie-
1975 and 1981, respectively, all in electrical engi- Mellon University, Pittsburgh, PA. He has consulted for the IBM Federal
neering. Systems Division and the General Electric Microelectronics Center. His

From 1973 to 1975 he was with the Hughes research interests include computer-aided design and test of VLSI circuits,
Aircraft Company where he participated in the parallel architectures, and fault tolerance of real-time and mission-oriented
design of fault dc tection/isolation and built-in test systems.
circuits for avionic systems. In 1977 he was with the Dr. Shen is a member of the Association for Computing Machinery, Tau
Systems Group of TRW, Redondo Beach. CA. Beta Pi, Eta Kappa Nu, and Sigma Xi. He is a recipient of a National Science

where he was involved in the study and preliminary design of a local computer Foundation Presidential Young Investigator Award.

EMBEDDED SIGNATURE MONITORING:
ANALYSIS AND TECHNIQUE

Kent D. Wilken and John Paul Shen

Department of Electrical & Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213 U.S.A.

Abstract - A new method is presented for The search for improved approaches to processor
analyzing the effectiveness of Embedded Signature error detection has led researchers to propose
Monitoring (ESM) techniques at concurrently detecting monitoring abstractions of processor behavior [81.
processor control flow errors. Application of this Besides the prospect of new economies, this approach
method to previously reported ESM techniques shows can be technology and implementation independent.
that error detection coverage is limited by program Several specific techniques have been presented that
characteristics and does not improve for signatures help to insure correct processor operation by encoding a
larger than 8 bits. This analysis helps to explain the program with signatures that are verified during
less than expected coverage results from experiments execution [5], 161, [9], [13], [14]. This approach to
performed on an ESM technique that used a 16-bit concurrent processor testing will be referred to as
signature. A new ESM technique is introduced that signature monitoring.
achieves coverage of 1 -- w for a w-bit signature. Use Signature monitoring uses a compiler to generate and
of this new technique with signatures of typical size store signatures based on the content and structure of a
reduces undetected errors by orders of magnitude monitored program. A simple hardware monitor
compared to previous techniques. A method is regenerates the signatures at run-time and compares
introduced for assessing the memory overhead required them with the pre-computed version. An error is
by an ESM technique. The new ES.'I technique is declared when a difference occurs. Errors that can be
shoum to require the least overhead based on a sample detected by signature monitoring have been divided
set of program statistics. Previous work has reported into two categories [13]. Bit errors occur when the
that embedded signatures can decrease the performance program is executed in correct order but the value of
of the monitored processor by as much as 10016. one or more program memory bits has been altered.
Analysis presented here suggests that the new ESM Failures that result in incorrect program flow are
technique can substantially reduce performance losses. classified as sequence errors.

Previous work has analyzed signature monitoring
1. Introduction error coverage [4]. The model that was proposed for

sequence error coverage produces results that are not
As integrated circuits increase in complexity the consistent with recent experimental data 19]. This

problem of insuring correct operation at their point of paper proposes a new method for analyzing sequence
manufacture or during their operating life becomes error coverage. This method is applied to previously
more difficult. At the same time, devices are shrinking proposed signature monitoring techniques. A
and becoming more susceptible to transient errors while correspondence is shown between the results obtained
in use [12]. These trends make the role of concurrent with this method and experimental data. This method
testing increasingly important and challenging. and the accompanying analysis lead to the proposal of a
Concurrent Processor Testinf new signature monitoring technique.

Signature monitoring has been applied to bothConcurrent detection of processor errors has assembly level programs and microprograms 1131, 114].
traditionally relied on the addition of redundancy based Wide microprogram words make techniques that use
on the processor's structure. Replication of the entire one signature field per word feasible at that level. For
processor with a check on the pairwise result is a assembly level programs, one signature must cover a
common approach. Processors have been scrutinized to number of words in order to achieve low overhead.
determine which sub-structures can make use of more Techniques that are effective at the assembly level are
economical coding techniques to detect errors. Any also applicable to the microprogram level. Without loss
remaining sub-structures are erqor checked through of generality this paper will focus on assembly level
duplication. While effective, these approaches may not signature monitoring.
be sufficiently economical for many applications.

The analytical methods developed here can be An encoding function is selected and at compile time
applied to specific programs to generate quantitative is used to compute a signature based on the bit values
results based on statistical data from the programs. of the block's instructions. A Cyclic Redundancy Code
Example statistics are used in this paper to generate (CRC) 17] is a typical encoding function. The pre-
numerical results in order to give some indication of the computed signature is embedded within the block,
relative and absolute effectiveness of various signature usually at the beginning or the end. Information
monitoring techniques. While indicative, these delimiting block boundaries must be generated by the
numerical results are not definitive. Specific results will compiler and is also embedded within the block.
show application dependencies. Dedicated hardware is used to re-compute the

Embedded Signature Monitoring signatures at run-time. A Parallel-input Linear

Assembly level signature monitoring techniques have Feedback Shift Register (PLFSR) is typically used for

been proposed that store signatures within the this purpose. The PLFSR is initialized at the beginning

processor's program space 15], 191, 1131 1141 or in a of a block. The calculation proceeds, operating on the
separate memory structure [6], 1111. The former fetched instructions until an embedded delimiter

approach, which will be termed Embedded Signature indicates that the end of a block has been reached. The
Monitoring (ESM), has the potential for lower memory resulting signature is compared with the embedded
overhead because it does not require storage for a version and if unequal, an error is declared. At run-time
duplicate set of program control flow information. The the embedded signatures and delimiters must be
latter approach, which will be termed Disjoint explicitly or implicitly ignored by the processor's
Signature Monitoring (DSM), has an inherent execution unit.

performance advantage because the pre-computed Several variations from the basic ESM technique have
signatures do not consume processor memory been proposed. Different encoding functions can be
bandwidth. This paper will restrict its analysis to ESM selected based on the expected error mechanisms.
techniques although some of the analysis is relevant to Carter 121 discusses functions that can detect all double
DSM techniques. or triple bit errors within a specified block. Other

Figure 1 shows a section from a program that has functions from coding theory can be used for ESM to

been signatured using a basic ESM technique. A guarantee the detection of distinct bit error patterns
program is analyzed by the compiler and divided into over specified block lengths, e.g. a single burst,

block. (131. A block is a program segment that starts at multiple phased bursts, multiple single bit errors, etc.

the destination of a branch instruction. In the context [7]. Mahmood and McCluskey [41 propose generating

of this paper the term branch refers to all control flow signatures based on the column order of bits within a
altering instructions, including subroutine calls and block rather than row order. Codes can then be

returns. A block ends at the first occurrence of a applied that guarantee the detection of similar column

branch instruction or at the location preceding the next

branch destination. A block is also referred to as a The program segment that is covered by an
branch-free interval or straight-line code. embedded signature will be termed an interval. In the

basic ESM technique an interval is the same as a block.
All of the proposed ESM techniques allow for an
interval to span more than one block. This reduces the
number of embedded signatures which in turn decreases
memory and performance overhead. Sridhar andr Thatte 1131 only place signatures in blocks that precede

BIock a location where the program flow merges. Namjoo
[51 proposes signaturing paths, that may consist of

multiple blocks, based on an analysis of the program
Signatur flow graph. Schuette and Shen 191 introduce a method

that eliminates the storage requirement for signatures
which can be combined with a branch address.

Various methods have been proposed for embedding
the information that delimits an interval. Sridhar and
Thatte [131 and Schuette and Shen 19) make use of a
unique opcode to indic_.e t'c end of an interval. The
interval's beginning is implied. A single dedicated bit
column is used by Sridhar and Thatte (131 and Tung
and Robinson (141 for a similar purpose. Namjoo

(51 proposes the use of two bit columns which allows
both the interval's beginning and end to be explicitly

Figure 1: Basic Embedded Signaturing indicated.

Paper 14.1
325

2. Coverage Analysis The intermediate signatures fo, all locations in a

particular program can be determined at compile time.

Mahmood and McCluskey 14] proposed that sequence All locations with intermediate signature value V are

errors can be modeled as memory errors and concluded placed into a group Dv. All locations that can

that they go undetected at a rate of 2 for a w-bit transition to a member in Dv are placed in a group SV -

signature. Experimental results reported by Schuette It is assumed that a sequence error can emanate from
and Shen [91 show that the fraction of undetected errors any source location with equal probability and errantly
is much higher than predicted by this model. This transition to any destination location with equal
section develops a new method for analyzing sequence probability. Let m denote the total number of memory
error coverage that is shown to be more consistent with locations of a fully occupied program space, d denote
the experimental observations, the number of locations in Dv and av the number in

Undetected Sequence Error Estimation Sv . The fraction of undetected sequence errors

Signature generation consists of a series of originating from a specific member of Sv is (dT1)/(m-I)

intermediate calculations based on the series of words r (d,-1)/m for typical values of m. The probability
within an interval. The result of each intermediate that the sequence error came from a member of SV is
calculation corresponds to the signature of a sub-
interval. For an interval [Oj) consisting of words WO, /m. The estimated fraction of uncovered sequence

W., a location k in the range [] has an implicitly errors associated with the intermediate signature value
" V is C :

associated intermediate signature, Ik' that is based on v2
the encoding of the words in the sub-interval (0,k-1]. (
The value of Ik is equal to the kth intermediate

calculation: Summing the result of this expression over all possible
intermediate signature values V will yield an estimate

k '-- (k-i' Wk-i) for the total fraction of undetected sequence errors e:

where Wk.I is the value of the word at location k-1, f is e a, (d,--)/m2

the signaturing function and Ii is a specified initial

value, e.g. 0. The last intermediate signature,'I., is the
J Correlated Intermediate Sicnatures

interval's signature. Figure 2 shows an interval and the
intermediate signatures that are associated with each Using (1) a random distribution of intermediate

location, signatures over 2' memory locations will yield a
sequence error coverage of 1-2' for a u.-bit signature.

10 = 0 W0 Any correlation among the intermediate signatures will

.1 -f(0,W) WI increase the size of certain intermediate signature
12 =f(1 1.W1) W2 groups and hence decrease the coverage. The ESM

* .techniques proposed by Sridhar and Thatte [13],
* • Namjoo [5] and Schuette and Shen [9] use the same
- * initial intermediate signature value, IO, for each

f ,) i* signature interval. This implies that all locations that
i .'W.) begin an interval reside in the same group Dxo. The

intermediate signature for the second interval location,

Figure 2: Intermediate Signature Generation I,, is a function of I0 and the value of the first word,
W0. Any correlation among the W. values of the

Intermediate signatures can be used to estimate the intervals will cause the 1, values to be correlated.

fraction of undetected sequence errors. A correctly Similarly, if correlated sets of consecutive word values

operating processor will always transition from the are found to begin intervals the intermediate signatures

current location S to thi correct succeeding location that are generated will be correspondingly correlated.

D. After completing an intermediate calculation or an Kobayashi [3] reports that a strong correlation exists

initialization at S, the PLFSR will contain the among entire blocks of instructions.

intermediate signature ID' A sequence error will cause A precise estimate for undetected errors caused by

the program to transition to a different location D*. If intermediate signature correlation would require

ID, Z= IDI the signature calculation that continues from considering the contribution of all intermediate
D* will yield a correct result at the end of that interval signature values V. However, a lower bound can be

and the error will go undetected. If IDI 74 1D , the established by considering only the effect of 10. Several

PLFSR will contain an incorrect value and the error studies reported block sizes in the range of 4-10 words
will persist until it is detected at the end of the 13], [4], [5), 19). Adding a signature word to each block

interval, increases the size to 5-11 words. From the method

developed above, this implies that (d1o-1)/m is 1/5 to The reported 50% signature reduction [10) due to

1/11. Since the last word of each block is a source for BAN m-/m will
a transition to the beginning of a block, a10/m is also be halved. This would result in a four-fold reduction in

0 tthe undetected sequence error rate that was estimated
1/5 to 1/11. Therefore a low estimate for the fraction above. However hashed signatures associated with
of undetected sequence errors, (1 0)(d -1)/M 2, is 1% to subroutine calls and unconditional branches create both
4%. the end and start of a signature interval in the same

manner as an explicit signature. A location where a
This result applies to the basic ESM technique that signature is hashed onto a conditional branch does not

has a signature for every block. The various proposed constitute the beginning or end of a signature interval.
techniques reduce the total number of signatures, which However when that branch is taken the PLFSR is reset,
in turn reduces the undetected errors due to I0. making it an I0 source location. The net effect is that

Schuette and Shen [9) introduced a technique referred the lower signature count resulting from the use of BAH
to as Branch Address Hashing (BAH) that reduces the reduces the number of undetected errors due to 1 by
number of signatures by about 50% 1101. As shown in roughly 1.5 times. This does not appreciably change
Figure 3 a signature is used to cover the interval that the range of undetected error rates estimated above.
resides between two program merge nodes. A merge Any reduction in undetected errors due to a lower
node is a program location that can be reached by both signature count appears to be even smaller for the other
sequential execution and a branch. A branch operation techniques.
within this interval would normally constitute the end
of a block and require a signature. This need is If intermediate signatures are randomly distributed,
eliminated by replacing the branch address with a an 8-bit signature would exhibit a 2"8 (0.4%)
hashed address that is the bit-wise XOR of the branch undetected sequence error rate. Coupled with the
address and the location's intermediate signature. above analysis this suggests that coverage for these
Under normal operation, when the branch is taken the techniques will be dominated by the effects of
correct intermediate signature is generated and is intermediate signature correlation. Signatures larger
XORed with the hashed address to extract the actual than 8 bits will yield no coverage improvement. This in
branch address. If an error occurs that leads to an part explains why the experimental data from
incorrect intermediate signature, the decoded branch Signatured Instruction Streams (SIS) 10] indicated 2%
address becomes an arbitrary value and an errant jump undetected -instruction errors" (9] rather than 2-16
s taken to a location where the error may be detected. (0.0015%) as would be expected from Mahmood and

Such an event is termed an induced sequence error and McCluskey's model [4] for the 16-bit signature used.
is analyzed in the next subsection. Induced Sequence Errors

The induced sequence error described above is
asiother major cause of undetected sequence errors.
Figure 4 is a Markov model showing how an error is
handled by the SIS technique. The original sequence
error in state A will go undetected into state W due to
correlated intermediate signatures at a rate c
determined in (1). Otherwise the error persists until
the end of the current block, state B. Only a fraction b

Inter l of the blocks reached by the sequence error end with an
HashecBran explicit signature, state C. Here the error is either

Address detected with probability 1-2w in state Y or goes

undetected with probability 2w in state X. The
remaining 1-b blocks end with a hashed branch, state
D. Of the hashed branches a fraction c are conditional
branches, state E. Because a random block is reached
by the sequence error, the branch condition is not
strongly correlated with the processor state. The
branch condition is therefore assumed to be satisfied at
a random rate equal to one half. This implies that c/2

Signature of the total hashed branches are not taken. For these
occurrences execution increments into the next block,

.- No~de state B, where resolution of the error continues.

The remaining 1-(c/2) traction of the branches are
taken and result in an induced sequence error, state

Figure 3: Branch Address Hashing F. When an induced sequence error occurs, the PLFSR

contains the reset value, 10. The error will go A simulation of the Markov model shown in Figure 4

undetected if the errant branch arrives at the beginning using these parameters estimates the total fraction of

of an interval. For an average interval length L the sequence errors that are undetected by the SIS
probability of this occurrence is I/L, in which case state technique to be in the range of 6% to 16%. Of this

IL - 1)/m. total 5% to 12% are due to the induced sequence erroris reached. I (d mechanism. As determined earlier, 1% to 4% are due to

correlated intermediate signatures.

This result is much higher than the 2% undetected
Bit Error Sequence Error instruction errors measured experimentally for SIS. This

discrepancy is explained as follows. In addition to the

0 WESM mechanism, the SIS experimental system contains
A program-bounds checking hardware. Because the

programs used in the experiment were small (1-4K)
140 compared to the 641K PC relative address space, there is

B a high probability that an induced sequence error will
cause a branch out of the preset bounds and be

01'----bb ' detected by this auxiliary mechanism. Similar tests
2 w Undetected done with larger program sizes are expected to result in

D lower coverage. In addition, as reported in 191 the
D'-C 12- processor's built-in error detection mechanisms could

Y not be disabled and contributed to error coverage
1-C Detected beyond that possible by the ESM mechanism alone.

E While the use of BAH makes a significant reduction in
1/ memory overhead, this analysis suggests that error

F1IA2 F coverage is sacrificed.

1-(1/L) Uncorrelating Intermediate Siznatures

Tung and Robinson 1141 propose an ESM technique
that improves on the coverage achievable with SIS. A

Figure 4: Markov Model of SIS Error Handling value is embedded at the destination of any branch
operation. Each embedded value constitutes the
beginning of an interval. The embedded value is equal

If the induced sequence error does not arrive at the to the bit-wise XOR of the interval's signature and the
beginning of an interval, execution proceeds at a new value's memory address. During execution the monitor
arbitrary block and the process continues in state independently generates the branch destination address.
B. The error persists until one of the absorption states The monitor extracts the destination interval's
X,Y or Z is reached. signature by XORing the destination address generated

by the monitor with the embedded value. A branch
Along with sequence errors, bit errors go undetected that transitions to the beginning of the wrong interval

by the SIS technique due to induced sequence errors. A can be detected by this technique but is not detected by
bit error starts in state B and from there transitions SIS. Encoding signatures in this manner effectively
through the Markov model in a manner similar to that uncorrelates intermediate signatures thereby eliminating
of a sequence error. the associated undetected sequence errors.

Data can be applied to the above Markov model in To minimize memory overhead Tung and Robinson
order to estimate the total fraction of sequence errors employ BAH. This causes the proposed technique to be
not detected by the SIS technique. A low estimate for vulnerable to induced sequence errors as analyzed
e, the undetected sequence errors due to correlated above. Because induced sequence errors appear to be
intermediate signatures, has been determined to be 1% the dominant component of undetected sequence errors
to 4%. Shen and Schuette 110] estimate b, the fraction this technique may achieve only a modest coverage
of blocks with signatures, to be 1/2. Alexander and improvement. Furthermore, as shown in Section 4,
Wortman III report c, the fraction of conditional even with B4H this technique necessitates an increase
branches, to be roughly 1/3. L, the average interval in memory overhead compared with SIS. This is caused
length, can be determined as follows. For the SIS by a higher signature count. This technique requires an
technique it is estimated that 4 out of 5 blocks begin a embedded value at each branch destination. SIS
signature interval. The remaining 1/5 are contained requires a signature for each merge node. All merge
within an interval that is started by another block. As nodes are branch destinations but there are branch
established earlier, typical block sizes range from 4 to destination- that are not merge nodes.
10 words. The SIS technique adds a two word
opeode/signature to half of the blocks. The other blocks The hardware monitor needed for this technique is
contain hashed signatures. This suggests that the necessarily more complex than any other that has been
interval size L ranges from 6 to 14 words, proposed. It must recognize the different addressing

modes that exist at the assembly program level, e.g. Namjoo 15] proposes the use of two columns to
absolute, Program Counter (PC) relative and register indicate the start and end of a signature interval. The
relative. Each effective branch destination address must encoding of the columns is done in a manner that
be computed in real-time and stored in a special insures that the failure of either column will be
register. This requires more extensive opcode decoding detected. While effective at detecting column failures,
and a new monitor register. Program counter this method introduces significant overhead. For the
emulation and an adder are needed to independently 10-bit system studied, the two additional columns
generate PC relative addresses. The contents of registers represent a 12.5% memory overhead. This overhead
must be emulated in order to accommodate register- was not included when the paper 15) suggests that the
relative addressing modes. Additional control circuitry technique's overhead could be as small as 10% to 12%.
is necessary to orchestrate these extra resources. Furthermore, this accounting of column overhead

Other Failure Modes should be considered a lower bound. In a system with

A key premise of signature monitoring is that it multiple processes, certain processes may not require

insures correct program sequencing. Only single the increased integrity offered by ESM or may exclude
sequence errors have been considered thus far. This signaturing for performance reasons. For example, it

could be generalized to include multiple sequence errors. might be desirable to protect the operating system or

However, multiple sequence errors may not be other critical processes while the remainder are not

independent, an assumption necessary to extend the monitored. The use of dedicated memory columns to
single error analysis. A notorious example of dependent delimit signature intervals means that these lattersequence errors is the stuck PC. This has been processes would unnecessarily incur memory columnidentified as an error that must be cover in safety overhead. Similarly, if the memory structure iscritical systems 151. None of the proposed ESM homogeneous across the program and data spaces, thetechniques detect this error. It is possible for an ESM data space is burdened with unnecessary overhead.technique to be augmented with a mechanism that Because the data space is often larger than the programspecifically addresses the stuck PC. However, space this could add a significant amount of overhead.depending on the mechanism, this still may not be A proper accounting would determine the total column
sufficient to insure correct program sequencing. The overhead relative to the fraction of the memory that
stuck PC can be viewed as an infinite loop containing requires signaturing and include that with the total
one address that effectively circumvents the ESM overhead estimate.
technique. This failure mode can be generalized to 3. A New ESM Technique
include infinite loops containing more than one address.
These failure modes should also be detected by any The previous section demonstrates that existing
such auxiliary mechanism. techniques can at best detect g9% of sequence errors

A second premise is that ESM is effective at detecting and cannot effectively use signatures larger than 8 bits.
errors in program memory. Memory array errors While this is adequate for many applications, some
generally occur as single or multiple bit, row or column require much higher levels of coverage. This section
errors. Mahmood and McCluskey 141 discuss the introduces a new ESM technique that takes full
effectiveness of ESM at detecting single bit and row advantage of the error detection potential offered by
errors. Carter 121 proposes a technique that covers larger signatures.
multiple bit errors. [4] notes the importance of detecting The Basic Scheme
memory column failures and suggests that codes can be
selected which guarantee coverage of certain column The strong intermediate signature correlation is
failures, caused by an initial intermediate signature that is a

constant value and by short signature intervals. This
Notwithstanding the proposal by Mahmood and results in a high density of identical intermediateMcCluskey (41, several ESM techniques remain sgaue. Ti rbe a erciidb

vulnerable to column failures. Tung and Robinson signatures. This problem can be rectified by
randomizing the initial intermediate signature for eachdistinguggst teueof a singlure memoy comna interval and/or increasing the size of an interval. A

distinguish between a signature and an ordinary nwEMtcnqei rpsdta a oho hs

instruction. If this column is stuck-at the value that ded atrte s

indicates "ordinary instruction", the monitor will never

receive a signature check indication and the error will The intermediate signature for the first location of a
go undetected. Sridhar and Thatte 113] and Schuette program to be monitored by the new technique is
and Shen (9] make use of a unique opcode followed by a selected at random. The remaining intermediate
signature. If any of the columns are stuck-at a value signatures are determined as before except that the
that is the complement of the corresponding bit value entire program is treated as a single interval. A
in the unique opcode, signature checking will likewise properly selected signaturing function should generate a
be disabled. This suggests that these latter techniques set of intermediate signatures that are randomly
do not cover half of all possible stuck-at column distributed.
failures.

If the program flow is strictly sequential, no The signature of an interrupted program is saved on
embedded information is necessary for a monitor to the monitor's signature stack. The error does not
regenerate these intermediate signatures. However, any propagate into the interrupting program but is
branch will cause the value in the monitor's PLFSR to preserved to be detected when the program resumes
differ from the branch destination's intermediate following the return from interrupt.
signature. The program is made monitorable by adding The memory overhead required for this system
a justifying ignature to each non-return branch consists of one signature for each return instruction and
instruction as shown in Figure 5. The justifying one justifying signature for the remaining branch
signature is equal to the bit-wise XOR of the instructions. The average error detection latency is
intermediate signature of the location following the equal to half the mean time between the execution of
branch and the intermediate signature of the branch return operations. If this latency is too long, signatures
destinatior. When a branch is taken the justifying can be embedded at other selected locations.
signature is XORed with the contents of the PLFSR.
Under normal operation the correct destination Refinements to the Basic Scheme
intermediate signature is extracted. If a conditional The intermediate signature at a merge node is the
branch is not taken, the justifying signature is ignored same whether location is accessed sequentially or by a
and the monitor retains the already correct branch. The intermediate signature value at a merge
Intermediate signature for the following location. In all node is determined by the sequential access path. The
cases the justifying signature is ignored by the justifying signature associated with the branch is
processor's execution unit. Hashing the two selected so that after decoding, the value matches that
intermediate signatures in this manner insures that an determined by the sequential access path.
error propagates across branch operations

A program location that can be reached by a branch
* ;but cannot be accessed sequentially will be termed an
* "6 isolated node. Because its value is not determined by a

I sequential access path, the intermediate signature for an
B.41 n.1 isolated node can be selected arbitrarily. The only

1.2 n2 requirement is that all branches to the isolated node
I n+3 must have the same decoded justifying signature value.

M+ n In*4 I A random distribution of intermediate signatures can
be generated for intervals that are smaller than the
entire program. Aui interval can start at any isolated

10.3 node and must end at a location preceding an isolated
1 44 lnG node. The intermediate signature for the starting
I++ isolated node is selected at random. The intermediate

4:+5 [7 signatures for the rest of the interval are generated as
before. This insures a random distribution of
intermediate signatures. A subroutine is a typical
interval over which intermediate signature generation
might occur.

.9 A branch that does not have a merge node as a
S'. tlx destination can have its justifying signature eliminated.

Figure 6 shows the flow diagram of an If-Else construct.
The destination of the conditional branch is an isolated

Figure 5: The New ESM Technique node. As discussed above, the intermediate signature of
an isolated node can be selected arbitrarily. The

In order to insure a random distribution of proposed refinement selects the intermediate signature
intermediate signatures, the monitor must push the of this isolated node to be the same as the intermediate
current intermediate signature onto its stack when a signature of the location following the branch. Because
subroutine call is executed. When a return from each path leading from the branch instruction has the
subroutine is executed, the monitor pops the same intermediate signature, a justifying signature is
Intermediate signature value for the location following not necessary and memory overhead is reduced. An
the subroutine call. The justifying signature associated isolated node whose intermediate signature has been
with the subroutine call will cause an error to selected in this manner must start a new interval. This
propagate into the subroutine. As shown in Figure 5, a optimization implies that separate opcodes are
signature is embedded following the return from necessary to indicate to the monitor whether or not thesubroutie istructid.dErorsi th pr tent for branch instruction is followed by a justifying signature.subro utine instruction. E rrors that propagate into or T e e t o o e d s a e i d c t d i h i u e 6 a
occur inside the subroutine can be detected at this These two opcodes are indicated in the Figure 6 as
point. This signature check point is the only one
required by this technique.

ESM costs are the added memory that is needed to
store the embedded information and the performance

Branch lost by the monitored processor. This section analyzes
Address these costs for the ESM techniques that have been

proposed and shows that the new ESM technique
introduces the least amount of overhead in both
categories.

Memory

A new method for comparing memory overhead

Address among the existing and the new ESM techniques is
introduced. The program to be monitored is assumed
to be written in a high level language using structured
programming methods. The HLL constructs that

Isolated Node include branch instructions are identified. A typical list
consists of the Subroutine (procedure) Call, If, If Else,
Return, For, While, Switch, and Do constructs. A flow
diagram is created for each of these constructs.
Signaturing is then applied to each flow diagram
according to the ESM techniques proposed in 151, 101,

(131, 114] and the new technique. Figure 7 shows the
For construct as signatured by each technique. Table 1
shows the number of words of overhead required by
each technique for each construct. The data for the

Figure 6: Refinement Applied to If-Else Construct Switch construct assumes four associated cases.

Namjoo [5] Schuette 19) Sridhar [13] Tung [14]

Coverage and Latency

This new ESM technique's random distribution of opcode

intermediate signatures suggests that sequence errors Sgnalue S "gnahve

will go undetected at a 2 -w rate. Conditional b:anches I Sa._iuS a.

without justifying signatures have two destinations with
the same intermediate signature. This introduces a O rarw

slight correlation among the intermediate signatures. Address -a-d Add'

Similarly, a register-relative branch that might be

generated by a compiler for a Switch statement will O "anc

have a larger number of destinations with the same A

Intermediate signature. This suggests that the sequence
error coverage for the new ESM technique will be close
to but somewhat less than 1-2-w. For a 16-bit signature &ae ,,

this corresponds to more than a two order of magnitude Ad*OSS

improvement compared with existing techniques. sopcede

For the new ESM technique, signature checks only srann e

occur at return instructions. This reduces the signature Wen I Ad[]ss

density compared with previous techniques and results
In a larger error detection latency. The size of the
latency increase can be estimated. Except for the
procedure call, SIS contains one signature per high level
language statement that contains a branch instruction.
The statistical distribution of high level language
statements presented in [1) implies that 1/6 of the SiS Adress Figure 7: Comparative Signaturing

signatures are associated with the return statement. Of the "For" Construct

This suggests that the new ESM technique's latency will
be roughly six times that of a system using SIS.

4. ESM Overhead Analysis
Address

The original motivation for new approaches to
concurrent processor error detection was to provide
approaches that are more economical. The two major

Namioolsl Schuetiel9] Sridhar(131 Tung[14j Wiken[l dedicated column(s) is required to delimit a signature
interval. The refined version of the new ESM technique

JSB 1 0 2 0 1 does require a second conditional branch opcode to
IF 2 2 4 1 allow the monitor to determine whether a justifying

IF ELSE 2 2 4 2 1 signature follows. This use of the opcode space is a form
of overhead that is not included in the above estimate.

RETURN 1 1 2 1 1 While this overhead appears to be small, it is difficult
FOR 2 2 4 2 1 to quantify because it i architecture specific.

WHILE 2 2 4 2 Excluding this refinement and requiring a justifying
signature for all branches would increase the new ESMSWITCH 4 2 S 4 technique's overhead from Q% to 12% based on the

DO 2 2 4 1 data used above.
As shown earlier, Namjoo [51 proposes the only ESM

Table 1: HL.L-Construct Memory Overhead technique that is immune to column errors.
Conventional parity can be added to the new ESM
technique to gain this capability at a memory overheadThe average overhead per branching statementcan cost of 3% for a 32-bit machine. Unlike the added

be derived based on a statistical distribution. from 1]. Multiplying the columns proposed by Namjoo the parity column has

distribution in Table 2 by the overheads in Table 1 utility for programs that are not signatured and for the
yields the weighted average overhead per branching data space.
statement for each technique as shown in the first row Performance
of Table 3. Schuette and Shen j91 report that the SIS
overhead is roughly 10%. This data point can be used Performance will be lost at points where the
to convert all of the overhead estimates into processor must ignore embedded signatures and execute
percentages. The techniques proposed by Tung and a null operation. It has been suggested that processor
Robinson 114] and Namjoo 151 include one and two bit performance will degrade in rough correspondence to
columns respectively to indicate a signature interval's signature overhead [9], 1131. Because the new technique
beginning and end. This overhead is added to each of and SIS have similarly low overheads it is expected thatthese techniques assuming a 32-bit processor. The they will have similar performance losses. A closer

examination shows that the new ESM technique has aresulting memory overhead percentages are shown in decided performance advantage.
the second row of Table 3.

Most contemporary processors use a pipeline or a
prefetch queue to increase instruction throughput. A
branch operation that is taken will cause the contents
of the pipeline or queue to be flushed. Each of the new

0.33 0.23 0.14 0.10 0.08 0.05 0.02 0.00 technique's embedded signatures follows a branch
o__o_ instruction. It is possible for a signature to be read from

memory and be available to the ionitor without
Table 2: Statement Distribution impacting processor performance. This occurs when the

signature is flushed following the branch and is never
executed by the processor.

The frequency at which this occurs can be estimated
based on a statistical distribution of branch

Namo [51 Schuefte g] Sddhar [131 Tung (14] Wilken [l instructions. The HLL construct flow diagrams and the
data from Table 2 suggest that roughly 3/4 of the new1.6 1.14 3.12 0.9s 1.04 technique's signatures follow unconditional branches.

20S to 27S 12% 9S These signatures will always be flushed. Half of all
conditional branches are assumed to be taken which

Table 3: Weighted-Average Memory Overhead implies that an additional 1/8 of the signatures are
flushed. This suggests that only 1/8 of all signatures
used by the new i8SM technique impact processor
performance. In contrast, roughly 9/10 of the SIS
technique's embedded words impact performance. This

The new technique results in the least overhead. This suggests that the new ESM technique reduces the
occurs for two reasons. First, the signatures are sparse performance loss by about seven times compared to SIS.
because they only occur following return from Alexander and Wortman I1 report data that shows the
subroutine instructions. Second, the locations of actual dynamic occurrence of unconditional branches is much
signatures and the justifying signatures are implied by higher than their static occurrence. This suggests that
the preceding processor instruction. No memory the estimated reduction in lost performance is
overhead in the form of special opcode words or a conservative.

5. Conclusions 13] Kobayashi, I., Dynamic Profile of Instruction
Sequences for the IBM Systemn/370, IEEE

Embedded Signature Monitoring is an efficient and Transactions on Computers C-B3, 9 (September

effective approach for concurrent detection of processor 1983), 859-861.
control flow errors. This paper presents an analytical

method which shows that coverage better than 99% 141 Mahmood, A. and E. McCluskey, Watchdog
not achievable with existing techniques. A new ESM
technique is introduced which has coverage that Processors: Error Coverage and Overhead, pp.

approaches 1-2-w when w-bit signatures are used. This 214-219, Proc. 15th FTCS, IEEE, (1985).
corresponds to coverage that is better than 99.99% for
a 16 bit signature. A method is also introduced for 15] Namjoo, M., Techniques for Testing of VLSI
determining the memory overhead needed by a Processor Operation, pp. 461-468, Proc. 12th
particular ESM technique. The new ESM technique is ITC, IEEE, (1082).
shown to be quite efficient, requiring the least memory
overhead based on one reported set of program [61 Namjoo, M., Cerberus-16: An Architecture For a
statistics. For a typical contemporary processor, the General Purpose Watchdog Ptrocessor, pp.
new technique is shown to substantially reduce 216-219, Proc. 13th FTCS, IEEE, (1983).
performance overhead, better than a seven-fold
improvement based on one comparison. A disadvantage 171 Peterson, W. and E. Weldon Jr.
of the new ESM technique is that error detection Error-Correcting Codes, (MIT Press, 1072).
latency increases due to the reduced signature density.
A comparative estimate shows a six-fold increase. [8] Schmid, M., R. Trapp, A. Davidoff and

The new ESM technique appears to be superior if G. Masson, Upset Exposure by Means of
high coverage, low memory overhead and low Abstraction Vlerification, pp. 237-244, Proc. 12th
performance overhead dominate the system FTCS, IEEE, (1082).
requirements. The technique proposed by Schuette and
Shen (9] has similarly low memory overhead and would [91 Schuette, M. and J. Shen, Processor Control
seem to be the most appropriate if more emphasis is Flow Monitoring Using Signatured Instruction
placed on minimizing latency and if coverage and Streams, IEEE Transactions on Computers
performance are of lesser importance. C-36, 3 (March 1987), 264-276.

Steady improvements have been made in ESM
analysis and technique since the approach was f101 Shen, J. and M. Schuette, On-Line Self-
introduced five years ago. This paper contributes to Monitoring Using Signatured Instruction
both analysis and technique. Research in this area Streams, pp. 275-282, Proc. 13th ITC, IEEE,
continues. A new approach is being investigated that (1983).
promises to go significantly beyond the group of
techniques analyzed here by way of its ability to expand
coverage, reduce latency and allow for less memory and 1111 Shen, J. and S. Thomas, A Roving Monitoring
performance overhead. The results of this investigation Processor for Detection of Control Flow Errors in
are forthcoming. Multiple Processor Systems, Microprocessing

and Microprogramming 20, 4 & 5 (May 1987),
Acknowledgments 249-260.

This work was supported by the Office of Naval [12] Siewiorek, D. and R. Swarz, The Theory and
Research (ONR) under contract N00014-86-IK-0507. Practice of Reliable System Design, (Digital
Kent Wilken was partially supported by a graduate Press, 1982).
fellowship from the General Electric Foundation. A
special thanks is extended to Michael Schuette for his [13] Sridhar, T. and S. Thatte, Concurrent Checking
discussion and review of this work. of Program Flow in VLSI Processors, pp.

191-199, Proc 12th ITC, IEEE, (1982).

References
[14] Tung, C. and J. Robinson, On Concurrently

[11 Alexander, W. G. and D. Wortman, Static and Testable Microprogrammed Control Units, pp.
Dynamic Characteristics of XTL Programs, 895-000, Proc. 16th ITC, IEEE, (1986).
IEEE Computer 8, 11 (November 1975), 41-46.

[15 Turner, D., R. Burns, and H. Hecht, Designing
121 Carter, W., Improved Parallel Signature Micro-Based Systems for Fail-Safe Travel, IEEE

Checkers/Analyzers, pp. 416-421, Proc. 16th Spectrum 24, 2 (February 1987), 58-63.
FTCS, IEEE, (1986).

CONTINUOUS SIGNATURE MONITORING:
Efficient Concurrent-Detection of Processor Control Errors

Kent Wdken and John Paul Shen

Center for Dependable Systems
Department of Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract - This paper presents an efficient approach to con- nique that is more efficient than duplication. At the highest
current detection of processor control errors using signaured level, a processor can be decomposed into control and data sec-
programs. The new approach, called Continuous Signature tions. Data section errors can be detected by parity and arith-
Vonioring (CSM), makes significant advances beyond the ex- metic codes using a small amount of redundancy [18]. Detec-
ist'ng signature-monuoring techniques. For typical programs, tion of control section errors has been expensive because the
CSM decreases average error-detection latency by as much as section's structure is less regular, although a control section
8 imes, down to 12 to 1.6 program memory cycles. Memory designed using self-checking PLAs and parity-checked
owrheadfor storing signatures reaches a theoretical minimum, microcode may add less redundancy than duplication [7].
lowered as much as 4 times, down to 3 to 7%. The CSM
monitor is less complex by more than has and processor-
performance loss is reduced as much as 10 times, down to 0.6 Researchers have proposed detecting processor errors by
to 1-5%. CSM increases coverage of control-flow errors and monitoring the behavior of an executing progun
detects certain types of errors not detected by the existing tech- [3,9,10,12,13,14,15.16,20,21). The compiler abstracts
niques. incdming a stck program counter, the program's behavior and the abstraction is monitored for

run-time violations. Abstractions can be formed using various
aspects of program behavior, including control flow, memory

1. Introduction access, control signals, object type, and object range. Figure 1

Zonwent eramr detection is necessary to insure dependable shows the typical organization of a processor and its monitor.

p o sr operation. Although permanent processor faults can e
be detected using built-in self-test (BIST) or an external tester, Processor
concurremt detection mnust be used if errors caused by per-
manent and transient faults are to be detcted. Transient faultsadrs
hat reslt from decreased device size are a growing problem data Monft

[18]. Smaller devices are more susceptible to transient faults I

because the energy difference between logic levels is lower and Memory
because die higher possible speeds reduce timing margins. At
th sae time, the numnber of devices per processor is increas- Figure 1: Typical Processor-Monitor Organization.
in& tns pocessou arm subjected o noisy environments, and An advantage behavior-based error detection has over the
prossor dependability requirements are mor stringent. ucue-based approach is that it can insure end-tend in-

Structure-Based Error Detection tegrity of the abstraction from the point of compilation to the
point of execution. Program execution errors caused by any

Tadkional approaches to concurrent error detection add redun- source between these points are potentially detectable. These
dc7y based on the processor's structure. The most common sources include software errors and hardware design errors, as
approach is structural duplication, comparing the output of two well as permanent and transient hardware faults.
identical modules. Although effective, duplication is too expen-

ve for most system. Behavior-based error detection may prove to be mor cost ef-
fective than the structure-based approach for many applica-

Redundacy can also be added by decomposing the processor tions. To maximize cost effectiveness, the selected abstraction
into ualle structures, and then applying the most efficient must allow high error-detection coverage using a simple
errord technique to each sub-structure. Redundancy is monitor. Experiments reported by Schmid et al. [15] compared
less than 100% if any sub-structure is checked using a tech- various abstractions and showed that control flow offers the

Pae 43.1 1988 International Test Conference
914 CH2610-4/88/0000/0914501.00 © 1988 IEEE

most error-detection potential. Several researchers have monitor to distinguish program code and signatures. The
prpod control-flow monitoring techniques that use a simple processor ignores reference signatures fetched during execu-
mono and signatured programs [5, 13, 14, 16, 17. 20, 21], an tion, e.g. it executes NOPs, which reduces its performance.
aproah called signature monitoring 1211. An experiietal
system showed that signature monitoring is viable and provides Existing Sianature-Monitoring Techniques
significant detection coverage for a small cost [16].

Signature-monitoring techniques can be characterized by five
Simnature Monitoring properties: (1) error-detection latency, (2) memory overhead,

Signature monitoring can be viewed as concurrent signature (3) error-detection coverage, (4) monitor complexity, and (5)
processor-performance loss. Several researchers have proposed

analysis [6], with the, an and the reing signatures th- signature-monitoring techniques that improve upon the basic
sluded in the system, and the executing program used s technique in one or more of these properties. Namjoo
stimulus. The compiler computes and stores reference g [13] proposed a technique that encodes into each reference sig-
aturs of bit sequences that can be expected during program nature an interval of instructions, which can include multiple

execution. Dedicated monitor hardware generates signatures of blocks. This technique reduces memory overhead and perfor-
the rn-time sequences. The monitor compares the run-time mance loss because not every block requires an embedded sig -
signatures with the reference signaturs and declares an er nature. Namjoo [14] also proposed eliminating performance
a diffeence occurs. loss by storing signatures in memory that is local to the

Signature monitoring is effective at detecting processor control monitor. Schuette and Shen [16] proposed a technique called
errors but not data errors [16], because many control sequences Branch Address Hashing (BAH) tha eliminates the signature
can produce a constant signature where as data sequences storage location that normally follows a branch instruction, thus

generally do not. Bit sequences from any control level that reducing memory overhead and performance loss. Wilken and
produce a constant signature can be monitored: assembly ode Shen [21] showed that all techniques that begin each interval's[5, 13, 14, 16, 17,20,21], microcode [20], or hardware control signature computation with a fixed value, reduce control-flowlie [3]4.The best error-detection coverage is prde control error coverage. They proposed a technique that increasesntr sequences frrom all control levels and embedding t coverage by randomizing the initial values, and that also

reference signatures into the assembly code. Without loss of d memory overead and perfomance loss [21].
geerality, the remainder of this paper will refer to signatures of However, each of these proposed improvements seriously
assembly-level instruction sequences, which could also incor- degrades one or more of the other signature monitoring
porate lower-level control sequences. properties. The techniques that reduce memory overhead also

Figtre 2 shows a segment of assembly code that is signatured increase detection latency because the distance between refer-
using the basic technique. The compiler divides the code into ence signatures expands. Namjoo's proposal to rduce perfor-
blocks, groups of instructions that st= at a branch destination manoe loss increases memory overhead because the compiler
or at the location that follows a branch instruction, and end at must add links between reference signatures to allow the
the next branch instruction or the location that precedes the monitor to find the correct reference signatures as the program
next branch destination. The reference signature of the instruc- executes. Branch Address Hashing significantly reduces error
dons within each block is computed and then embedded at the coverage because, following the initial error, secondary err
block's end, at which point the code can not be modified. The are induced, and a large fraction are undetected [21].
sig e function S is typically a polynomial that generates a Continuous Signature Monitoring (CSM), the new approach in-
cyclic code [18]. An indicator bit is set in an ady troduced in this paper, makes major improvements in all sig-
colunt at each reference-signature location, which allows the n mnature montoring properties. The following five sections

present the techniques that provide the improvements along
with methods for quantifying the improvements. The final sec-
tion summarizes the results and oudines plans for future work.

Block

2. Decreased Error-Detection Latency

This section presents a new signature-monitoring technique that
significantly decreases error-detection latency. A short latency
can prevent error contamination from spreading and renderingkdCstor - the system undependable. If latency is short, recovery from
transient errors can be done with small recovery buffers and
can occur within the deadlines imposed by real-time systems.

Figure 2: The Basic Signature-Monitoring Technique.

Paper 43.1
915

Vertical Signtures at the word where the error occurs with probability 2-A, and the
error is undetected. The error remains undetected with prob-

Existing signature-monitoring techniques encode an instuction ability 2-h at each following word in the interval, because the
sequence by adding a reference signature to each interval in the error causes the function H to produce a pseudo-random run-
vertical directir. These are termed vertical signatures and arm time signature at that word. The average latency I can be es-
illustrated in Figure 2. Error-detection latency can be long timated by assuming the interval is infinitely long:
when vertical signatures are used because detection is deferred
until the interval's end. I) (j-l) 2 - (Ia)

p1
Latency is measured in program memory cycles starting with

the cycle that follows the cycle containing the error. A = [2-/(Il2-)]2 (lb)
progr memory cycle is the period from the star of one
program-memory access until the start of the next. One Replacing vertical signatures by horizontal signatures sig-

program memory cycle may consist of multiple clock cycles for nificantly reduces detection latency if memory overhead

processing complex instructions, operand access, etc. The remains constanL For constant memory overhead, a w-bit

average detection latency for an error that occurs in an interval word, and average interval length i i-I = w/h. For a typical

of length i is (i-1I/2 program memory cycles, assuming the er- value of w (32 bits) and the minimum size for h (I bi), i is 33
for is equally likely at all locations. Interval length is both words. This corresponds to an average vertical-signature

progrm and technique dependent. Several studies show that latency of 16 program memory cycles, compared with a I cycle
the average block size typically ranges from 4 to 10 words average horizontal-signature latency. As horizontal bits ae
[4,11,13,16]. Thus, including the signature added to each added, the decrease in horizontal-signature latency is roughly

block, the basic technique typically has a latency of 2 to 5 exponential. Increasing vertical overhead by an equal amoum

programn memory cycles, decreases vertical-signature latency only linearly.

Detection latency and the fraction of memory used for vertical Horizontal signatures have the added advantage that no perfor-

signatm are inversely related. Existing techniques reduce mance is lost because the signatures are fetched in parallel with

memory overhead by increasing interval size to include mul- the assembly code. Furthermore, the expected horizonma-

tiple blocks [13,16,21], which also increases latency. Con- signature latency is consistent across the entire program. in

versely, vertical Signatures must be added to reduce latercy, contrast, the vertical-signature latency can differ makedy be,
which alo lowers performance and increases cost. Further- en program sections with different interval sie.

more, for techniques that begin each interval's signature com. Horizontal signatures have the drawback that they provide
putation with a fixed value [13,16, 20], adding signatures lower error-detection coverage than vertical signatures if equal
rdues coverage, because a control-flow error from the end ofoneineral ha lndsatth beinin ofa rog iteva u memory ovrha is used. Horizontal signature coverage
me itrval that lands at the beginnng of a wrong interval is varies significantly with location in the interval and with bm-
undetected [21]. Shorer intervals increase this event's prob- val length. An interval's first word is included in all horizontal
ability, signatures in that interval, as illustrated in Figure 3. A random
Horizontal Sigtures error that occurs at the first word is detected by a horiznal

signature check in an interval of length i with probability 1-24.
Tb technique proposed here uses horizontal signatures to The interval's last word is only included in the last horizont
reduce detecti latency. Figure 3 shows the h bits added to signature. An error occurring there is detected with probability
each word in the horizontal direction that store a horizontal 1f. 1-2. In contrast, a w-bit vertical signature provides coverage
ance signature. The function H generates the horizontal sig. of 1-2" at any interval location for errors that create a random
mnawe for word j by operating on the instruction sequence from run-time signature, because all but one of the 2w possible error
the interval's beginning up to and including word j. signatusre will differ from the reference signature. If horzwn

swab" Bi overhead is equal to the vertical ovehad, then h = wli or
.= A. Thus, vertical signatures using equal overhead provide

the same high coverage (I -2-ih) for errors at all locations that is
provided by horizontal signatures only for errors at the first
word of each interval.

h Horizontal-Sianature Function
Figure 3: Horizontal Signatures. Detection latency and coverage can be improved by tailoring

Horizontal signatures reduce detection latency because the the horizontal-signature function H to detect single-bit errors.
monitor checks a signature during each program memory cycle. because single-bit errors occur with a higher frequency than the
There ae 2h possible horizontal signatures. A random run- preceding random-error assumption implies. The function H
signare produced by an error matches the reference signature can use sub-functions P and HO joined by the XOR operator to

Paper 43.1
Olin

generate one horizontal signature bit for each word, as il- proposed by Wilken and Shen provides the highest coverage
lustuted in Figure 4. The sub-function P generates the party and the lowest memory overhead [21]. Adding horizontal sig-
of word j. The sub-function H generates a one-bit signature of natures to this technique results in a combination that provides
the instructions from the interval's beginning up to but not in- the shortest latency, the highest coverage, and the lowest
cluding word j. Using the sub-function P, the monitor detects memory overhead. The approach that uses this combination of
with zero latency all single-bit errors and one half of the ran- techniques is termed Continuous Signature Monitoring (CSM)
da errors that occur at word j. Random errors not detected because the signatures are continuously checked using the
rsing P are detected using /4 with probability 1/2 at each word horizontal signatures, and because the vertical signatures main-
in the interval that follows j. The sub-function HI* generates tain error-detection continuity across block boundaries by using
the remaining h-i signature bits. Thus, using the composite justfying signatures [21], as explained in the next section. The
function H, the monitor still detects random errors with prob- associated techniques proposed in the remainder of this paper
ability 1 -2h during the first and each subsequent cycle, plus it further improve CSM's efficiency and effectiveness.

detects all single-bit errors with zero latency. The function H* can be selected so that the bit it generates is

equal to one of the bits of the intermediate signature

H (21] generated by the function S. The intermediate signature
for each word j is the vertical signature from the interval's

&H beginning up to and including word j-1. This selection reduces
P pthe time for compiling reference signatures because one of the

intermediate signature bits generated for the vertical signature
I -1 is also used as the horizontal signature bit. Similarly, the

igure 4: A Refined Horizontal-Signature Function. monitor hardware for run-time signature generation is less com-
plex than if the two functions were independent. Moreover, the

One-bit horizontal signatures can be used in the typical con- horizontal signatures maintain error-detection continuity across
purer system without adding memory overhead. Most systems block boundaries along with the vertical signature.
include a parity-bit column in main memory. The one-bit
horizontal signature generated by the function P4eH* can 3. Reduced Memory Overhead
replace each program word's parity bit This expands parity-
aum usage to include a parity check and a one-bit signature The primary limitation on the widespread use of concurrent er-

dmck at each word. Without loss of generality, the remainder ror detection is cost. Because memory overhead is signature-
of this paper will assume that one-bit horizontal signatures am monitoring's major cost component, minimum memory over-
used and are stored in the existing parity-bit column. head is necessary if signature monitoring is to reach its full
Two-Dimensional Signatures potential. This section presents a technique that reduces ver-

tical memory overhead to the theoretical minimum that is
Horizontal and vertical signatures can be used together to necessary to achieve coverag2 of 1-2-w using a w-bit signature.
pvid short latency and high coverage. The horizontal sig- A second technique is presented that reduces horizontal over-

ares insure short error-detection latency while the vertical head by eliminating the indicator-bit memory column.
signatres allow high error-detection coverage. Figure 5 shows Minimum Vertical-Overhead Theorem

Interval encoded with signatures in two dimensions. The
ompier first uses the function S to generate the vertical sig- A program can be represented by a program graph, a directed

Dinne, then uses the function H to generate a horizontal sig- graph that represents each block by a node and each possible
mm for each word, including one for the word containing the transition between blocks by an arc. Figure 6 shows a program
vertical signature. During execution, the monitor uses the two graph that represents the program segment shown in Figure 2
functions to generate both run-time signatures, which are com- and the block that follows it. The program-graph representation
pond with their respective reference signatures, will be used for developing a minimum-overhead theorem and

an overhead-reduction technique.

Figure 5: Combining Vertical and Horizontal Signatures.
Fgure 6: A Program Graph.

Although horizontal signatures can be combined with any of

the existing vertical-signamring techniques, the technique The following restrictions are placed on the program to be sig-

Paper 43.1

917

nuMM& Minimum Vertical-Overhead Technique

1. Branches are either one-way (unconditional) or two-way A technique is presented that signatures an aitrary program
(conditional). Where necessary, multi-way branches can be graph ad meets the bound of Theorem 1. To satisfy the
decomposed into two-way branches. coverage requirement, the internediate signatures must be rn-

2. The progrmn graph can be determined at compile-time arid domly distributed, and errors that occur in a path that does not
does not change during execution. contain a reference signature must be detected. The latter t-

3. There is one enty node, and a path exists from the entry quirement is met by embedding a w-bit justifying signature

node to all program locations. (13] into each path that merges with another path or itself, m-
stead of embedding the internediate signature of the merg

A lower bound on the vertical memory overhead required to location. The justifying signature is the XOR of the sour
achieve error-detection coverage of 1-2-w using a w-bit sig- path's signature and the intermediate signature of the uorge
nature can be shown assuming that: (a) the error causes the run- location. During normal operation, the run-time signaue
time signature to be a random value, (b) the signature function XORed with the justifying signature yields the correct me
generates a random intermediate-signature distribution, (c) the location intermediate signature. When an error occurs, the jus-
monitor contains no memory other than a register for ac- tifying signature allows the error to propagate from the source
cumulating the run-time signature, and (d) the intermediate sig- path to the destination path, where it can be deteced.
nature at each location is unique. CSM Signaturing Procedure. The following signaturing pro-

Ibis bound is shown using maximal paths, any path in the cedure adds only one signature per conditional branch. Inter-
program graph that starts at a designated location and ends at mediate signatures are randomly distributed because only one
(i) an exit node, (ii) a node that is contained in another maximal intermediate signature is a fixed value, therefore the bound of
path, or (iii) an arc where the path cycles back onto itself. Theorem I is met. The procedure places every signature after a

branch instruction, and maximizes the number of signamums
Each maximal path in any set of maximal paths that covers the that follow unconditional branch instructions. Later, this place-

wire program requires one w-bit signature. If a maximal path ment will be shown to be useful for reducing horizontal
ends at an exit (i), a reference signature must be added to and memory overhead and performance loss.
checked at the end of the exit node, otherwise the program can
teminate with an undetected error. The reference signature 1. The program graph is grouped into straight paths, maximal
must be w-bits for coverage of]-2"w at this location. If a max- sub-graphs containing nodes that are connected in die
imal path ends at a node that is contained in another maximal program graph and that have contiguous program locations.
path (ii) or ends by cycling back onto itself (iii), the inter- 2. The arc that enters the program is selected and is labeled with
mediate signature of the destination of the arc that ends the path a fixed value, e.g. 0.
must be embedded in the path, so that at run-time the monitor
can use it to continue the signature calculation at that destna- 3. The straight path that contains the node where thletims. Because di in nnediare signatres are randionly dis arc merges is signarued such that the node's initial inter-

'ti Becaue stred intermediate signatureust e andomyis mediate signature equals the incoming arc's label. If all
iributed, the stored intermediate signature must be w-bits. 7b mtright paths are signatured, go to Step 5.
ssumed random distribution of intermediate signatures implies
coverag of 1-2-w [21]. Therefore one signature is required per 4. (a) An outgoing unlabeled arc dtat merges with an unsig-

maximad path to achieve the desired detection coverage. natued node is selected from a signatured condkional-bruab
node; or (b) If no arc is selected, an outgoing unlabeled arc

A pruarn with n conditional branches can be partitioned into that merges with an unsignatured node in another straight
n+1 maximal paths. .The first maximal path is signatured sam- path is selected from an unsignatured conditional-branch

insg at the envy node. f an un-signatured maximal path still ex- node. The smraight path containing the conditional branch
is, there must be a conditional branch node that contains one node is signatured using xj as the initial intermediate sg-
signured and one un-signatured outgoing arc, otherwise it is nature; or (c) If no arc is selected, an unlabeled arc that
not possible to reach the un-signatured sub-graph from the merges with an unsignatured node in another straight path is
enmry node. Maximal paths re signatured starting at the unsig- selected from a signatured unconditional-branch node. (d)
nured outgoing arc of a conditional branch node, until the en- The selected arc is labeled with the internediate signature
tire program is signatured. For n conditional branches, n max- from the end of the branch node. Go to Step 3.
imal paths are added to the first, for a total of n+l maximal 5. An unlabeled arc that merges with a node whose intermediate
paths. Because each maximal path requires one signature, 1+l signature is a function of some xj is selected from a branch

sigsnaures are required for the program. This argument leads to node whose signalu is determined. The arc is labeled with
the following theorem: the intermediate signature from the end of the branch node.

'Theorem 1: To achieve signature-error coverage of 1-2 " The variable x. is resolved by equating the arc's label with

using w-bit signatures, at least n+l signatures are nee , the intermediate signature at its merge location.

where n is the number of conditional branches in the program. 6. A reference signature is embedded after each program exit.

Paper 43.1
0.40

A justifying signature is embedded after each branch instmc- characteristic signature. The subroutine's initial internediate
tion that has an unlabeled arc outgoing from a straight path. signature is a fixed value, e.g. 0. The procedure described ear-

lier is used to signature the subroutine. However, to produce
Using this procedure, a justifying signature that follows a con- the characteristic signature for all paths through the subroutine,
ditional branch is always associated with the arc thai leaves the justifying signatures are embedded after each RETURN instead
straight path, which represents a branch that is taken. Then- of reference signatures, except the RETURN that deternines
fore, the monitor must add the justifying signatur to the run- the characteristic signature, which has no embedded signature.
time signature if the branch is taken and must skip over the jus-
fifying signature if execution is sequential.

MainI
Sizuatured Subroutines with Minimum-Overhead IAL S.

Subroutine Addr.
The subroutine CALL and RETURN form a special class of -Y- re @S,
branch insructions. Because neither is a conditional branch, 'J•
Theorem 1 suggests that CALL and RETURN should add no SC Intermediate

signatures. However, because the destination of RETURN~ can L O~r~ Signature
be one of many locations, the two-way branch assumption is
violated and the preceding theorem and technique do not apply. Figure 7: Minimum-Overhead Subroutine Signaruring.
The theorem and the technique that follow show that sub- To generate the run-time signature, the monitor must use a sig-
routines can be signatured by adding one w-bit signature per n s r signature is pushed onto the stack
conditional branch. The intermediate signature distribution is after the CALL is executed. The monitor then sets the run-time
random, so the bound from Theorem 1 is extended. sign equal to the fixed value and calculates the

A subroutine can be viewed as a control sequence that occurs subroutine's run-time signature. When a RETURN is executed.

during a CALL's execution. As with other inta-instruction the monitor pops the signature off the stack and XORs it with

control sequences, e.g. microinstructions and hardware control the subroutine's run-time signature to obtain the return

signals, if the signature of the sequence is constant. it can be location's run-tine miermediate signature. Signature errors

included in the signature of the interval that contains the in- that occur in the subroutine and are undetected after execution

struction. The signature of a subroutine is constant if all paths of a RETURN, propagate to the return address where they can

through the subroutine produce the same signature. be detected. If the signature on the stack contains an undetected
error, detection is delayed until subroutine execution completes,

Using maximal paths and the assumptions used for Theorem 1, which causes average latency to increase.
a lower bound on the number of signatures that must be added
so that a subroutine's signature is constant can be shown. A A Refined Subroutine-Signaturing Technique

maximalpath exists from the entry to any exit. One such path is A refinement to the preceding technique for signaturing sub-
found and its signature is computed. This signaure is termed routines uses Branch Address Hashing (BAH) [16] to eliminate
he subroutine's characteristic signature. As before, each con- the signatr stack and the long latency it can cause. A BAH
ditional branch adds a maximal path that stars at one of ts compiler replaces an h lddress by the branch address
arcs, and ends when ondition (i), (6i), or (iii) is satisfied. If the XORed with the intermediate signature of the location contain-
added maximal path ends by merging with another maximal
pah (ii) or with itself (iW), a justifying signature must be added ing the branch address. During execution, the monitor uses the

so that the run-time uignature calculudon can continue at t un-tie intermedia signature to unhash the branch address

mag location. If the added maximal path ends at a subroutine for the processor.

et (i), a justifying signature is added so that the path's sig- Figure 8 illustrates this refinement. All subroutine addresses am
mm equals the characteristic signature. Therefore one sig- hashed, and the itermediate signature at the return location is
nature is added for each conditional branch, and any path from the subroutine's characteristic signature XORed with the return
the entry node to any exit produces the characteristic signature location's address.
during error-free operation. This argument leads to the follow-

m Main

Theorem 2- A constant signature can be obtained for each cAU "

subroutine by adding one justifying signature per conditicnal Subroutine t _ ,S;)
branch in the subroutine. (y o A , aSc

SIntermedate
Firrte 7 llustrates a technique that uses characteristic sig- sTFI [sIgnaturoe
ntues to signature subroutines using minimum memory over- SW

head. The intermediate signature at the return location is the Figure 8: Hashed CALL Addresses.
XOR of the preceding interval's signature and the subroutine's

Paper 43.1
919

A run-time signature error at a CALL causes an induced program's final min-time signature can be compared with the
control-flow error, which is a branch by the processor to an at- characteristic signature using processor software, e.g. the
burary location, caused by the incorrect subroutine address the program's characteristic signature can be stored in the
monitor produces when it unhashes the subroutine address program's process control block (PCB), and the compariso
using an incorrect rum-time signature. A small fraction of the can be done by the operating system.
induced control-flow errors will land at the beginning of an in-
correct subroutine, which has the same intenrediate sig The CSM signaring procedure places each justifying sig..
as the correct destination. These errors will be detected with nature after a branch instruction. For each location j that is a
probability I-2 ' when the subroutine completes, because the branch instruction followed by a justifying signature, the com-
characteristic signature will be incorrect following a REURN. pier sets an indicatorbit icqual tO lotherwise i sset equa
For the remaining induced control-flow errors, the run-time siS- to 0. Each indicator bit is XORed with each horizontal sig-
are does not atc the erme te sinature bit to form x, the hashed indicator bit. x=

destination with probability 1-2-w, and the error is detected i e(P eDf*). The hashed indicator bit is stored in the existing
after the short CSM latency. This compares with a latency that parity column as illustrated in Figure 9.
equals the subroutine's execution time for subroutine addresses
that are not hashed. Horizontal Signature Bits F Parity Column

1

Hashing subroutine addresses reduces coverage because fol- 1 1 0 Branch
lowing an induced control-flow error the run-time signature 0 1 t

matches the intermediate signature at the error destination with 0 .

probability 2 and the error is not detected. Because only a Bra

small fraction of all errors cause induced control-flow errors, Indicator Bits 0
the seduction in avenge detection coverage is al. Hashed Indicator Bits

Moeover, the CSM detection hierarchy discussed in Section 4
can detect many of the control-flow errors that match intr- Figure 9: Hashed Indicator Bits.
medi at. The monitor uses the run-time horizontal signature bit to un.

Signature errors that occur inside the subroutine and we not hash the indicator bit from the stored bit. If the run-time sig-

detected when the subroutine completes must propagate to the nature bit differs from its compile-time value, the run-time in-

calling progam for detection. This technique propagates the dicator bit becomes the complement of as compile-time value.

crrs by including the subroutine's characteristic signatm in For non-branch locations, the complemented run-time indiatr
th return location's intermediate signature. However, if this bit equals 1, changed from its compile-time value of 0. Thbis

signature were simply equal to the characteristic state is illegal because it implies that a justifying signature fol-

signature, all rem locations for this subroutine would have the lows a non-branch location. The monitor can use the unhashed

sme intermekate signature, which reduces control-flow error indicator bit and the opcode field to detect this illegal state. For
coverage. The return address can be XORed with the locations that contain branch instructions, an incorrect rn-time

subroutine's characteristic signatnre to uncorrlate that signature bit complements the run-tine indicator bit to become
location's intermediate signature, as shown in Figur 8. The 0 or 1 from its compile-time value of 1 or 0, respectively. Be-

monitor can access the return address on the data lines when the cause both values are possible for a branch instruction, the

pocessor pops it from its re m-address stack. monitor cannot detect the error.

Reduced Horizontal MemorY Overhead Hashed indicator bits increase error-detection latency becamse
an incorrect rm-time signature bit can only be detected at non-

At sun-*ne, the monitor must be able to locate embedded sig- branch locations. After an error, the probability is 1/2 ta the
amues. The basic technique does this using indicator bits in an signature bit is incorrect at the first and each following locaton.

exra memory column. A technique is proposed that allows the If the fraction of non-branch locations is n and the types of in-
monitz so locate signatures without an extra memory column, suctions are randomly distributed, then the probability of
thus reducing hontal memory overhead. This technique detecting the error at each location is n/2. Substituting n2 fir
uses a single type of embedded signature. The CSM signasur- 2

"h in equation (1), the detection latency I is:
ing procedure only embeds reference signatures following a
prolparm exit, all other embedded signatures are justifying sig- I- [(2-n)/n]2 (2)

nares. A program characteristic signature, determined by a

pah from the entry node to a selected exit, can be used to If all blocks ended with branches, the fraction of non-branch
eliminate the reference signatures. The reference signate at locations would be 3/4 to 9/10 for the typical average-block-
the selected exit is removed. The reference signature at all other sizes (4 to 10 word,). However, many blocks do not end with

exi is replaced by the justifying signature that causes the final branches. Some blocks end at non-branch locations that precede
sinaure to equal the program's characteristic signature. The a branch destination. Also, some blocks end at a CALL, which

Paper 43.1
920

is classified as a non-branch because it is never toUowed by a the state o these bits is illegal. Assuming the data values arm
justifying signature. Thus, the fraction of non-branch locations random, the detection probability at each location is determine4
will be higher than 3/4 to 9/10. Using the example value n = by the fraction of the architecture's opcodes that are non-branch
0.9, from equation (2), detection latency is 1.5 program opcodes. Substituting this fraction for n, equation (2) gives an
memory cycles. This compares with 1 program memory cycle estimate for the expected detection latency for these program-
for a one-bit horizontal signature that is not hashed with the in- bounds violations.
dicazor bit. For most signature-monitoring applications, this
average-laiency increase is minor compared with the eliminated Stuck-Incrementing PC. Errors caused by a PC that is stuck
cost of the extra memory column. incrementing through memory, i.e. PC = PC+ 1, are not detected

by some existing techniques. Following this error, program ex-
ecution will increment from one interval to the next contiguous

4. Increased Error-Detection Coverage interval. If the intervals are not connected in the program
graph, this constitutes a control-flow error. The techniques that

Thiection shows that the CSM approach increases error- begin each interval with a fixed value [13, 16, 20] cannot detect
detetio coerae b deectng oretyps o erorsandby s eror because the monitor only insures that the beginning

detecting control-flow errors with a higher probability than ex-

isting signature-monitoring techniques. of any interval follows the end of the current interval. This er-
ror can be detected by placing a reference signature between

Detection of Additional Error Types contiguous intervals tha are not connected in the program
graph, however this increases memory overhead.

The CSM approach detects the following types of errors not
detected by the existing techniques: The CSM approach can detect a stuck-incrementing PC without

alteration. When execution increments from one interval to a
False Loops. A previous report noted that if a processor's contiguous interval not connected to it in the program graph, a
progran counter (PC) is stuck at an address, the existing tech- signature error occurs with probability 1-2-w, because the first
niques cannot detect the error unless that address contains a ref- intenmediate signature of the contiguous interval is not corre-
erence signature (21]. In general, any error-created loop that lazed with the first intermediate signature of the succeeding in-
contain no reference signature is not detected by the existing terval in the program graph.
tediques. Sosnowsi [19] analyzed error-created false loops
and showed that the probability that a control-flow error creates Contre-Flow Error Detection
a fle loop can be as high as 0.1 for some processors. To The subroutine and program characteristic signures
dec a stuck PC and other false loops containing no reference The ou nd pror cacteic vi e ieasinatcoverage of conrol-flow errors because they provide hierar-chy of detection. A control-flow error is detected wherever it
techniques. A watchdog timer increases monitor complexity lands with probability 1-2w, because the run-time intermdiate
Ind adds memory overhead for tmer-reset commands, whichasdeads processor performane t signature is incorrect. If the error lands with the correct inter-

mediate signature and lands inside a subroutine, the error is

The CSM technique can detect false loops without augmen- detected with probability 1-2-w, because the subroutine's Tnm-
tation. At non-banch locations in the loop, the monitor detects dme charam stic signature will be incorrect following a
the er when the unhashed indicator bit equals 1. A brnch RETURN. In a multi-program system, if the error lands inside
ismaction that has a compile-time indicator bit equal to I must a different program with the correct intermediate and ub-
be followed by a justifying signature (a non-branch), which has routine characteristic signatures, the error is detected after the
an bdcat bit equO to 0. The monitor can also detect the er- program exit with probability l.2w, because the program's run-

o when the unhashed indicator bit equals I at a branch in- time characteristic signaure will be incorrect

amwiton and equals 1 at the next location. The control-flow-error coverage of this detection hierrchy can

Prrm-Bounds Violations. Without increasing cost, the ex- be estimated. Assume that the error lands at a random location
Ust techniques do not detect control-flow errors that cause in- in program memory. The fraction of program memory the ex-
sanction execution from the data space, a program bounds ecuting program occupies is p. The fraction of program
volatic. One existing technique augments its monitor with memory not occupied by subroutines is j. Because detection is
bounds checking hardware to detect these errors [16]. narly independent at each level in the hierarchy, the probabil-

ity that the error is not detected at all levels is approximately
The CSM approach can detect program-bounds violations using ps2" , and coverage of control-flow ero is I-ps2"w . This im-
its standard monitor. Following a control-flow error that lands proves upon the best previous result of 1-2"w [21].
in the data space, the monitor assunes that the fetched parity
bit is a hashed indicator bit, and that the fetched data is an in- A New Coverage Techniqu
struction. The unhashed "indicator bit" and the "instruction's" Control-flow errors that land at a location that has the same in-

ficoeld mre examined. and the monitor dec€lares an error if rl-oweosthtanataocintatasheami-termediate signature as the correct location are undetected. A

Paper 43.1

921

technique is presented that reduces the number of locations that

share intermediate signatures to below that of the signature Mooctoo M onito se

function's random distribution, thereby increasing coverage of opoo.. indicator

control-flow errors.intuiobt ~Monitor

The order of the instructions in a block that produces the P LA natured
Program $ignatured

&esire! program result is not always unique. The possible or- Memory
derngs are determined by the data dependence relations be-
tween instructions [8]. Also, a branch instruction has a fixed Figure 10: CSM Monitor-Processor Organization.

position at the end of the block. Within these limitations, the
compiler can re-order a block's instructions to reduce the loca- Using these inputs, the sub-monitor can observe the mutual be-

dons that share intermediate signatures. The compiler creates a havior of the processor coupled with the decoder, and 'can

hash table for storing each location's intermediate signature detect illegal behavior. Because the sub-monitor consists of a
when it is determined. As each block is signatured, its inter- small number of gates, errors it produces can be detected using
mediate signatures are compared with those in the hash table. duplication with little increase in monitor complexity.

If one or more of the block's intermediate signatures collides

with an entry in the hash table, the block's instructions am re- The CSM monitor's complexity is lower for other reasons. If

ordered. For each possible ordering, all collisions can be given the system is designed to tolerate transient errors, the CSM #p-

a weight that is a function of d, the number of entries in the proach significantly reduces the size of the recovery buffers,

hash table that share that intermediate signature. Based on the because the detection latency is much shorter. Also, the CSM

coverage analysis reported in [21], the appropriate weighting monitor does not need to add hardware to detect bounds viola-

function is d2+d. The ordering of the block's instructions with tions, or add a watchdog timer to detect false loops, as shown in

the least total weight is selected, and the corresponding inter- Section 4. Horizontal signature checking adds little hardware

mediate signatures are entered into the hash table. because the horizontal signature is taken directly from the ver-
tical signature generator, as proposed in Section 2. The

Collisions among subroutine or program characteristic sig- monitor's parity generator can replace the system's existing
natures can also be reduced. If more than one exit exists, the parity generator, and thus does increase system cost. The ver-
characteristic signature can be determined by an exit that does tical signature generator is typically a linear feedback shift
not cause a collision. If no such exit exists, the instructions of register (LFSR) (181, which is a module that is also used by
each exit block can be re-ordered, and an ordering of a block BIST techniques. The monitor's LFSR can be used for non-
that has minimum intermediate-signature collision-weight and concurrent testing, replacing an existing BIST LFSR, if any.
eliminates the characteristic-signature collision can be selected.

Subroutine characteristic signatures and subroutine zddrr"

.eand Monitor Complexity hashing eliminate the subroutine signature stack, as shown in

5. Performance aSection 3. A second stack has been proposed for storing the

This section discusses the reductions the CSM approach makes n-time signature when an exception occurs [16]. This stack

i rand monitor complexity. can also be eliminated by adding a justifying signature after
in processor performance-loss deach exit of the exception handling routine so that its charac-

A Less Complex Monitor teristic signature is 0. When the exception occurs, the signaure
of the handling routine is included in the run-time signature.

Concurent detection must be used to detect transient monitor During normal execution, the run-time signature when the ex-
errors. Existing techniques detect such errors using duplication ception completes is the same as when it ocoured.
[12]. A recursive application of behavior-based error detection

can be used to concurrently detect most of the CSM monitor's Reduced Processor Performance-Loss

transient errors with little increase in monitor complexity. Thus, Perfoman is lost when the processor executes a NOP at a

monitor complexity is reduced by nearly half. The monitor is location that contains a justifying signatu. A rough
divided into two pars, as illustrated in Figure 10. The major performance-loss approximation is made by assuming that ex-
prt, the decoder, inputs the address and the signatured instruc- ecution is equally likely at all locations and that all program

tion, which includes the hashed indicator bit. The decoder out- memory cycles have the same duration. With these asmump-

puts the unsignatured instruction and the unhashed indicator bit tions, the fraction of lost performance is equal to the fraction of
The decoder contains the hardware for run-time signature vertical memory overhead. The processor executes each sig-
generation, parity generation, indicator bit unhashing, opoode nature word (ie., a NOP) in the minimum program-menory-
decoding and CALL detection, subroutine address unhauhing, cycle time. The program memory cycles of some instructions

NOP generation for justifying signamres, and branch detection. are longer than the minimum. The ratio of the weighted-

The smaller part, the sub-monitor, inputs the unsignatured average program-memory-cycle to the minimum program-

instruction's opcode field and the unhashed indicator bit. memory-cycle can be determined, and then divided into the

Paper 43.1mol' , m mlm m m lmm m lum~n m n uu nn m m um

fracion of vertical memory overhead, to obtain an improved The number of blocks each control-flow construct creates is
(and lower) estimate of performance loss. Because the CSM ap- shown in Table I. (SWITCH is assumed to have four cases.)
poach achieves minimum vertical memory overhead, it also Figure 2 is an instance of IF-ELSE, which creates 3 blocks.
achieves mininmum performance loss.

IF IF-ELSE swIrTOI FOR WHILE DC) CALL RETURN

Performance loss is further reduced for processors that pipeline 2 3 7 3 3 2 1 1
or pre-fetch instructions, because a signature that follows a I
branch that is taken is flushed and not executed by the proces- Table 1: Blocks per HLL Control-Flow Construct.
ao (21]. A signature that follows an unconditional branch is
always flushed, and a signature that follows a conditional The vertical overhead used by each technique for each control-

branch is flushed a fraction of the time. Unlike existing tech- flow construct is listed in Table 2. Table 3 shows a relative

niques, the CSM signaturing procedure places each signature control-flow-construct usage for programs studied in [I], which

branch Instruction and guarantees that the maximum is used in making the numerical comparisons. Usage statistics

number of signatures follow a unconditional branch. Therefore, from other programs could also be used.

the CSM approach also achieves minimum performance loss Basic PSA SIS CSM
for processors that pipeline or pre-fetch instructions. IF 2 1 2 1

Some performance may be lost because CSM subroutine ad- IF-.ELSE 3 1 2 1

dresses are hashed. To unhash the address, an XOR gate must sWPM 7 3 2 3

be placed in the path between the processor and memory, which FOR 3 2 2 1

add two primitive-gate delays to each memory access. WHLE 3 2 2 1

DO 2 2 2 1
Namnjoo [14] proposed eliminating performance loss by storing

spananes in memory that is local to the monitor. This tech- CALL I 1 0 0

nique can be used with the CSM approach by moving all CSM REWRN I I 1 0
justifying signatures into monitor memory, and then adding Table 2: Words of Vertical Overhead.
links between the signatures to allow the monitor to find the
correct signatures as the program executes. The hashed in- IF IF-.ELSE swrrCi OR WHILE DO CA.. RETURN
dicator bits stored in the parity column of program memory ae _0.3 .14 .02 .0 .05 0.00 .38 ._0
retnd, and are unhashed and used by the monitor as before. 0
This combinauion preserves all the advantages of the CSM ap- Table 3: Relative Control-Flow-Construct Usage.
pmadr a short latency, minimum signature overhead, high
coverage, and concurtrent detection of monitor errors. To this Memory-Overhead Comparison
Namjoo's technique adds the benefit of performance-loss
elimination, but also adds the liabilities of increased memory Each technique's vertical overhead can be estinated using
ovubead for links between the signartues, and increased these data. The mari product of Table 3 and each column of
mWotm conplexity for traversing the links. If the monitor Is Table 2 yields each technique's weighted-average overhead per
an-chip, which is required for a processor with an on-chip in- contol-flow construct. The matrix product of Table 3 and the
suucdtm cache or an instruction pre-fetch queue, Nmjoo's transpose of Table 1 is the weighted-aveage blocks per con-
achnique is less viable because the signatures generally cannot struct. Multiplying this by the typical average-block-sizes (4 to
be l on-chip. 10), cited earlier, yields the weighted-average words per con-

struc Dividing this into each technique's weighted-average
overhead per control-flow construct yields the fraction of ver-

6. Comparison with Existing Techniques tical overhead, which is shown in the first row of Table 4.

In this section a method is presented that allows a numerical Basic PSA SIS CSA
Comparison to be made among different signature-monitoring
amcduiques' memory overhead, latency, perfomance loss, Vertical 10-25% 6-15% 6-15% 3-7%
control-flow-error coverage. This is an extension of the method Horizontal 3% 6% 0% 0%
usedin[21). Thetec tiquscomparedarethebasictcue, Total 13-28% 12-21% 6-15% 3-7%
gjaeralized Path Signature Analysis (PSA) proposed by Nmn-
joo [13], Signatured Imuction Streams (SIS) proposed by Table 4: Estimated Memory Overhead.
Schuee and Shen t16:, and the CSM techniquie. The second row of Table 4 lists the horizontal overhead used by

This method assunes that the signatured program is compiled each technique, assuming a 32-bit word. The basic technique
frm a structured high-level language (HLL). The HLL uses one memory column for an indicator bit. The PSA tech-
control-flow constructs are identified. A typical list is: IF, IF- nique uses two columns, one to indicate the beginning of a path
ELSE, SWITCH, FOR, WHILE, DO, CALL, and RETURN. and the other to indicate the path's end f 13]. The SIS technique

Paper 43. 1

923

uses no horizontal overhead because a special opcode word will be executed 100% of the time that its block is executed. A
(included in the vertical overhead) precedes each signature to signature thai follows an unconditional branch will be flushed
indicate its location [16]. The CSM technique adds no horizon- and is executed 0% of the time. Various studies, e.g. [4], have
tal overhead because the existing parity column is used to store shown that conditional branches are typically taken 50% of the
the hashed indicator bit. The third row of Table 4 shows each time. Thus, signatures that follow a conditional branch will
technique's estimated total overhead. Comparing the midpoint typically be executed 50% of the time. For each technique,
of each range, the CSM technique is seen to reduce total multiplying these percentages by the number of signam of
memory overhead by as much as 4 times. that type used in each control-flow construct, and surming the

products yields the performance overhead for that construct,
Latency Comparison which is shown in Table 8.

The fraction of non-branch instructions n, which determines the Basic PSA s5s CSM

CSM technique's detection latency, can be estimated Table 5 IF 1.5 1 2 0.5

shows the branch instructions per control-flow construct ta IF-ELSE 1.5 1 2 0
use an indicator bit. From Tables 1, 3, and 5, the weighted- SWrrC*i 2 3 2 0

average branch instructions per block is 0.5. Dividing this by FO .5 2 2 0

the typical average-block-sizes (4 to 10 words) yields the frac-
tion of branch instructions, 0.05 to 0.12. Thus, the fraction of I S 2 2 0
non-branch instructions n ranges from 0.88 to 0.95. From [O 1.5 2 2 0.5

equation (2), the estimated latency using hashed indicator bits CALL 0 1 0 0

is 1.2 to 1.6 program memory cycles. REnJRN 1 0 1 0 0

IF IF-ELSE swrrai FOR WILE DO CA.L aRM Table 8: Performance Overhead.

F 2 6 2 2 , 0 1 The matrix product of Table 3 and each column of Table 8
Table 5: Branch Instructions per Control-Fow Construct. yields each technique's weighted-average performance over-head per control-flow construct. Tables I and 3, and the typical

IF IF-ELSE SWrroi FOR wHM.E DO CALL R average-block-sizes can be used to produce the weighted-

oA 0 1 1 1 1 average words per construct. Dividing this into each
1 6 a I I 1 c 1 thnique's weighted-average performance overhead per

control-flow construct yields the fraction of performance lost,
Table 6: Referene Signatures prControl-Rlow Construct. which is shown in Table 9. The CSM approach is sen to

The average detection latencies for the SIS and PSA techniques reduce performance loss by as much as 10 times.

can also estimated. Table 6 shows the number of reference sig- Basic PSA SIS CS
natmr used by the SIS and PSA techniques for each control-
flow cnsuct. Using Tables 1,3, and 6, the weighted-average I4-11 6-15% 6.14% 0.6-1.5%
refemrce-signares per block is 0.32 and 0.33 for the PSA and Table 9: Estimated Performance Loss.
SIS techniques, respectively. Thus, both techniques have 3
times fewer mference signatures than the basic technique. Ver- Error-Detection Coverate Comparison
tical reference-signature density and latency are inversely re-

lated. Therefore, latency increases from the basic technique's 2 A comparison can be made among each technique's control-

to 5 progran memory cycles to an estimated 6 to 15 cycles for flow-error coverage using the analysis reported in [21]. Tech-
the PSA and SIS techniques. Table 7 summarizes the estimated niques such as CSM that have a random intermediate signature

average detection-latency for each technique. Comparing the distribution have control-flow-error coverage of 1-2-w, which is

midpoint of each latency range, the CSM technique decreases higher than 99.99% for a 16 or 32-bit signature. The control-

latency by as much as 8 times. flow-error coverage of the SIS technique was shown to be 84 to
96% [21]. For the basic and PSA techniques, the analysis

Basic PSA Sis reported in [21] shows that control-flow-error coverage is less

2-5__ 6_15_ 6-15__ 1.2-1.6 than I - (r2), where r is the density of reference signaturcs. For
2-5 6-15 6-15 1.2-1.6 thebasictec niquer=1/(b+l),wherebistheblocksize. For

Table 7: Average Detection-Latency in P.M. Cycles. the typical average-block-sizes (4 to 10 words), the control-
flow-error coverage of the basic technique is 96 to 99%. Using

Performance-Loss Comparison Tables 3 and 6, and the typical average-block-size, r is 3 to 7%
for the PSA technique, which results in an estimated control-

High-performance processors typically pipeline or pre-fetch in- flow-error coverage of 99.5 to 99.9%. These results are shown
structions. Each technique's performance loss can be estimated in Table 10. The CSM technique seen to leave orders of mag-
for such processors. A signature that does not follow a branch nitude fewer control-flow errors undetected.

Paler 43..

Basic PSA SIS (3M [3] Daniels, S.. A Concurrent Test Technique for Standard
9 9Microprocessors, pp. 389-394, Dig. of Papers Cornpcon

96-99% 99.5.99.9% 84-96% 99.99+% Spring 83. IEEE. (1983).

Table 10: Control-Flow-Error Coverage. 14] DeRosa. 1. & H. Levy, An Evaluation of Branch
Architectures. pp. 10-16. Proc. 14th Comp. Arch, (1987).

Each of these signature-monitoring techniques can detect all er-

rors that convert a program-memory word into a random value, [5] Eifen. J & J. Shen. Processor Monitoring Using

"d can detect all double and triple single bit errors within a Asynchronous Signatured Instruction Streams. pp. 394-399.and an etec al doule nd wplesinge bt erorswithn aProc. 14th FTCS, IEEE-. (1984).

specified inrval by using the signaturing function proposed by

Cana [2]. However, the CSM approach can detect more mul- [6] Frobwerk, R_ Signature Analysis: A New Digital Field

tiple error patterns because its latency is shorter and detection Service Method, Hewlett Packard Journal S (May 1977), 2-8.

of the initial error(s) is probable before a following error pos- [7] Halbert, M. & S. Bose. Design Approach for a VLSI Self-
sibly cancels the error in the Wrtim signature. Checking MIL-STD-1750A Microprocessor. pp. 254-259.

Proc. 14th FTCS. =,,E. (1984).

7. Summary and Future Work (8] Kuck. D.. The Structure of Computers and Compuzation.
(Wiley. 1978).

This paper presents a new approach to signature monitoring

that significantly improves each signatur-monitoring property. [9] Lu, D., Watchdog Processors and Structural Integrity

Signature monitoring, which can be viewed as concurrent sig- Checking, IEEE Transactions on Computers C-3J. 7 (uly

nature analysis, is useful for detecting processor control errors 1982).681-685.

at all levels of control: assembly-code, microcode, and [10] Mahmood, A. & E. McCluskey, Concurrent Fault Detection
hardwae control. At the assembly level, coverage of program- Using a Watchdog Processor and Assertins. pp. 622-628.
memory errors is markedly higher compared with adding an Proc. 13th ITC, IEEE, (1983).

equal number of parity bits. Continuous Signature Monitoring [11] Mahmood. A. & E. McCluskey, Watchdog Processors: Error
lowers the cost of adding signature monitoring to a system by Coverage and Overhead. pp. 214-219, Proc. 15th FTCS.
reducing memory overhead to a theoretical minimum and by IEEE. (1985).
d ceasing the complexity of the monitor. The short CSM

latecy an aciitae rcovry fom ranien erors~ ~[12] Mahmood. A. & E. McCluskey. Concurrent E~rror Detecionlat ency can facilitate recovery from trwnsient errors and can U i g W t h o r c s o s -A S r e ,I E r n a t otUsing Watchdog Processors - A Survey. IEEE Transccnons
prevent the spread of error contamination. By increasing on Computers 37. 2 (February 1988), 160-174.
covere of control-flow errors and multiple program-memory

enran, the CSM approach improves signature monitoring's ef- [13] Namjoo, M., Techniques for Testing of VLSI Processor

fectiveness. Continuous Signature Monitoring is a viable ap- Operation, pp. 461-468. Proc. 12th TCIEEE, (1982).

proach for concurrently detecting processor control errors that [14] Namjoo, M.. Cerberus-16: An Architecture For a General
is nmuch less expensive than duplication. Purpose Watchdog Processor, pp. 216-219. Proc. 13th FTCS.

IEEE. (1983).
In the future, a CSM monitor for a specific processor will be
designed. This will provide a better quantitative understanding [IS] Schmid. M.. R. Trapp. A. Davidoff & G. Masson. Upset

of monitor co exity and allow experiments to be conducted Exposure by Means of Abstraction Verification, pp. 237.244.Prc. 12th FTCS, .EE (1982).
to confirm the analysis presented in this paper. The CSM

monitor can also be used for off-line tes Methods will be ex- (16] Schuette. M. & J. Shen. Processor Control Flow Moni ring
plond for generating signatured test programs (ie. test vectors) Using Signatured Instruction Streams. IEEE Transrtis on
so that the CSM monitor can be used to provide good off-line Computers C-36. 3 (March 1987), 264-276.

coverage of permanent processor faults. (17] Shen. J. & S. Tomas, A Roving Monitoring Pjaceso for

Detection of Control Flow Errors in Multiple Procesor
Systems, Microprocessing and Microprogrammang 20,4 & 5

Acknowedment (May 1987). 249-269.

This work was supported by the Office of Naval Research [181 Siewioek, D.&LSwarz, The Theory and Pracce of

(ONR) under contract N00014-86-K-0507. Reliable System Design, (Digital Press. 1982).

[19] Sosnowski, J., Evaluation of Transient Hazards in

References Microprocessor Controllers, pp. 364-369, Proc. 16th FTCS.
IEEF, (1986).

[1] Alexander, W. G. & D. Wortman, Static and Dynamic [20) Sridhar. T. & S. Thatte, Concurrent Checking of Program
Cbaracterstics of XPL Programs. IEEE Computer 8, 11 Flow in VLSI Processors, pp. 191-199, Proc 12th ITC. (1982).
(November 1975). 41-46.

[21] Wilken, K. & J. Shen, Embedded Signature Monitoring
12J Carta, W., Improved Parallel Signature CheckerslAnalyzers, Analysis and Technique, pp. 324-333, Proc. 17th ITC, (1987).

pp. 416-421. Proc. 16th FTCS, IEEE, (1986).

Paper 43.1
925

Concurrent Error Detection Using Signature Monitoring and Encryption

Kent Wilken and John Paul Shen

Center for Dependable Systems
Department of Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

Abstract -- This paper presents an efficient approach to con- techniques that monitor program control flow using signatured
current detection of prograr' execution errors that combines programs and a simple hardware monitor, a general aproach
signature monitoring with program encryption. Sources of we call signature monitoring. This paper proposes a new ap-
detectable errors include permanent and transient hardware proach to signature monitoring that increases its efficiency and
faults, software and hardware design faults, and computer effectiveness.
viruses. Errors are detected by a simple monitor that uses sig-
natures embedded in a compatibly encrypted program. The 11 Signltre Monitoring
monitor concurrently decrypts the program using the processor To provide efficient error detection, signature monitoring ex-
control-bit sequences that are included in the signatures. Com- ploits a common program redundancy: few instructions alter
puter virus attacks are difficult because details of the control flow. This redundancy allows program segments con-
processor's internal operation are needed to attach compatibly taining many -isuctions to be coded and later checked, as a
encrypted code. Encryption and a small signature cache added unit. Figure I shows an elementary signature-monitoring tech-
to the monitor allow the lowest memory overhead of any nique. The signature compiler divides the assembly code into
proposed signature-monitoring technique. Encryption and the basic blocks [1] and computes a reference signature for each
program memory's error correction/detection code are com- block using the function V. The compiler embeds the reference
bined to reduce signature-error detection latency by more than signature at the end of the block. and sets the indicator bit in an
60 times, while maintaining memory error correction/detection, added memory column at the corresponding location.

1. Introduction

Complete computer dependability requires detection of errors Basic Block
from all sources. Since the earliest computers, much attention
has been focused on detecting errors caused by hardware faults.
As system complexity increased, detection of errors caused by
software and hardware design faults became important. Al-
though faults are often assumed to be inadvertent, deliberate
faults (e.g. computer viruses) cause errors that must be detected. Indicator Bit
The potential for deliberai; faults becomes greater as computer
use and computer communication increases. Detection of errors
caused by deliberate faults, a problem traditionally considered
by computer security researchers, is emerging as a fault-tolerant Figure 1: Elementay Signat-ire-Monitoring Technique.
computing research topic [10].

During execution, the monitor generates the block's run-time
This paper proposes an efticient behavior-based approach to signature as it observes the executed instructions. At the set in-
detecti.g errors caused by certain hardware, design, and dicator bit the monitor compares the run-time signature with the
deiber-. fnits. In the behavior-based approach, a program's reference signature and declares an error if they differ. Detect-
behavior is abstracted and the abstraction is monitored for run- able errors include control-bit errors and control-flow errors. A
time violations. No fault model is assumed, any fault control-flow error occurs when the instruction execution se-
(hardware, design, or deliberate) that causes incorrect prigram quence is incorrect. Control-bit errors result when instructions
behavior is potentially detectable. To be efficient, the selected are executed in the correct order but one or more of the sig-
abstraction must provide high error-detection coverage at a low natured control bits is incorrect. The signature can include con-
COsL Schmid, et al., [15] studied several program abstractions trol bits from assembly code, microcode, and hardware control
and found that program control flow offers the most error detec- lines.
tion potential. Researchers [9, 13, 14, 16, 18,22] have proposed

Pretnted at the 1st international Working Conference on

Dependable Computers in Critical Applications

Signature monitoring techniques have been proposed that reduce Although innovative, the encrypted signature-graph approach

memory overhead for storing signatures by allowing a path con- has initations. The decryption overhead precludes this ap-
tining more than one basic block to be encoded into each sig- proach if process context switches are frequent [9]. For systems

nature [13, 16, 22]. The technique proposed by Wilken and that use virtual memory, the monitor's memory is large because

Shen [22], Continuous Signature Monitoring (CSM), was shown it must contain the entire sigature graph, even though only a

to reduce memory overhead to a theoretical lower bound by par- fraction of the program may reside in the processor's real

titioning the program into the minimum number of paths. This memory. Moreover, the signature graph is large because it con-

result is based on the assumptions that the monitor contains no tains the signatures plus the links that form the graph. For

memory other than a register for accumulating the run-time sig- microprocessors that use an on-chip cache, the monitor must be

nature, and that control-flow error detection coverage is 1-2"' located on-chip to observe the program's behavior [22]. For this

for a %-bit signature [22]. In Section 2 of this paper, these as- approach, an on-chip monitor requires a separate address and

sumptions are relaxed and a technique is proposed that uses data bus (and possibly its own cache) for accessing the signature

encryption and a small signature cache added to the monitor to graph, to avoid reducing processor performance, and to ensure

further lower memory overhead without impacting coverage, the privacy of the graph's plaintext.

The CSM technique proposed in [22] significantly reduces the In Section 4, an alternative approach to concurrent virus detec-

latency for detecting signature errors by using the program tion is proposed that uses signatures embedded in the program.

memory's parity column to store an encoded bit that allows This approach provides significant resistance to virus attacks,
detection of parity and signature errors at each program loca- and avoids the limitations of the encrypted signature-graph ap-

tion. In Section 3, an encryption-based technique is proposed proach. Section 5 summarizes the paper's contributions.

for use with single-error-correcting/double-error-detecting

(SEC/DED) program memory. This technique exploits the 2. Basic Encryption and Signature Caching
SEC/DED code to produce a dramatic reduction in signature-

error detection latency, while preserving the code's error This section introduces the basic approach to combining sig-
correction/detection capability, nature monitoring and program encryption. The improvements

provided by this approach include reductions in both memory

1.2 Computer Virus Detection overhead and error detection latency.

Recently, the computing community has experienced numerous 2.1 Basic Encryption

computer virus attacks (5]. Cohen [3] showed that computer
viruses can be created with modest skill and effort, can spread Figure 2a shows a path that is signatured using the conventional

rapidly, and pose a significant security threat. As computers approach. A path's signature is the result of a series of inter-
proliferate, the number and severity of computer virus attacks is mediate calculations performed at each word in the path:

likely to increase. Effective and efficient virus-detection tech-

niques are needed. Sk = V (Skt., Ckl) (1)

Joseph and Avizienis [9] propose extending signature monitor- where k ranges from 1 to j, V is the signature function, So is a

ing to include concurrent virus detection. Signature monitoring specified initial value, and Ck-i represents the values of the

can detect a virus, unless the virus is properly signatured. monitored control bits during execution of word Wk 1. Location

Proper signaturing of a virus may be easy for earlier techniques k is associated with intermediate signature (21] SkI which for

because they use a single signature function that the attacker bO is the signature of the sub-path [0, k-I). The last inter-

migIt know or easily deduce [9]. Joseph and Avizienis propose mediate signature, Sj, is the path's signature.

using multiple signature functions, one of which is randomly

selected by the signature compiler for each program. Using a W 0W G So
technique proposed by Namjoo [14], signatures are linked to W, W G S1

form a graph that is isomorphic to the program flow graph. I I
While the processor executes the program, the monitor traverses Wj-. Wj.i (jS.

the graph and checks the signatures [14]. Joseph and Avizienis MS77,7 j .

proposed encrypting the signature graph and a vector that (a) Conventional Approach (b) Instruction Hashing

represents the function. The decryption key is securely stored,

and later delivered to the monitor when the program is loaded. Figure 2: Program Signauring.
The monitor decrypts the graph and the function's vector, and The conventional approach's only alteration to the assembly

stores the plaintext [2] in its local memory, which is not read- code is the embedded reference signatures. For the proposed

able externally. Attacks are averted because a virus cannot approach illustrated in Figure 2b, reference signatures are em-

easily attach segments to the program that conform to the exist- bedded as before, but the signature compiler also encrypts each
ing signature graph, or easily alter the program and the word using that location's intermediate signature as the key.
encrypted signature graph, without detection. Figure 2b shows an efficient encryption function, the exclusive-

2

or (XOR) operator. The monitor generates the run-time inter- signature-monitoring techniques because it has less memory
mediate signature, decrypts the word, and delivers the result to overhead, lower error-detection latency, higher error-detection
the processor for execution. coverage, a less complex monitor, and low processor-

perfonnance loss. Adding instruction hashing to this technique
Schuette and Shen [16] proposed a related technique called further increases its efficiency because CSNI benefits from all of
branch address hashing (BAH) that eliminates reference sig- the aforementioned instruction-hashing improvements.
natures that follow branch instructions. Each branch address is Moreover, CSM combined with instruction hashing is the basis
replaced by the branch address hashed (XORed) with its inter- for the signature-caching technique proposed later in this sec-
mediate signature. Following a signature error, the unhashed tion, the latency reduction technique proposed in Section 3, and
branch address becomes a pseudo-random value, and a jump is the virus-resistant technique proposed in Section 4.
taken to an arbitrary location, where the error may be detected.
The basic encryption approach proposed here can be viewed as 2.2 Justifying Sienatures
a generalization of BAH because all instruction words are
hashed, not just branch addresses. Thus, this approach is termed This subsection reviews justifying signatures [13] as back-

instruction hashing. ground for the signature-caching technique proposed in the next
subsection. A justifying signature is a word embedded in a path

Instruction hashing provides several improvements to signature that sets (justifies) the path's signature to a particular value.
monitoring's efficiency. A computer system that uses signature Namjoo's [13] Path Signature Analysis (PSA) technique uses
monitoring will generally include numerous other hardware and justifying signatures to reduce memory overhead. In Figure 3, a
software mechanisms to detect such errors as illegal opcodes, simple program is represented by a program graph, a directed
address or capability violations, etc. Experiments show that graph that represents each basic block by a node and each pos-
such mechanisms can detect a large fraction of processor errors sible transition between basic blocks by an arc. PSA constructs
[16]. Following an error that produces an incorrect signature, sets of paths that cover all legal sequences of nodes in the graph.

the intermediate signatures and hence the unhashed instructions All paths in a set sart at the same node, and share a common
are pseudo-random. Execution of pseudo-random instructions reference signature, which is embedded at the beginning of the
will trigger numerous error detection mechanisms, resulting in starting node. PSA adds justifying signatures to selected nodes
reduced error-detection latency. Moreover, these mechanisms so that all paths in a set produce the same signature. The path
provide a redundant (and diverse) means for detecting signature sets for Figure 3 are {ABD, ABC) and (BD, BC). Reference
errors should the monitor fail in a mode that prevents it from signatures are embedded at the beginning of nodes A and B. A
detecting or reporting errors. justifying signature is embedded in node C or D so that these

nodes (and hence the paths in the two path sets) produce the
Instruction hashing also provides improvements where BAH same signature. Thus, PSA uses three signatures for this
would otherwise be applied. Signatures that follow branch in- program, compared with four used by the basic technique.
structions can be removed using instruction hashing, as with

BAH. However, BAH must expand a branch instruction that A
contains a short branch address into a branch instruction fol-

lowed by a full-word address [16]. Instruction hashing reduces

memory overhead because address expansion is not needed.
Also. instruction hashing's unhashing circuit is less complex Figure 3: Example Program Graph.
and adds less delay to instruction fetches because all words are
unhashed, compared with BA's selective unhashing. The CSM technique [22] further reduces memory overhead by

An advantage can result from the pseudo-random instruction using justifying signatures to create a program thaz produces the
same signature along any route from entry to exit CSM coulddistribution that instrction hashing produces following a sig- be viewed as a generalization of PSA that needs only one path

nature error. The CSM technique proposed in [22] uses BAH to set and se reference signature to cover an entire program.

eliminate the signature that would otherwise follow each sub- s artons reram graph to ma eths [22].

routine CALL. After an error, if a CALL is executed before the C s t programs en]ry

error is detected, and if the arbitrary destination address n . c e g maximal path eg t t h bra nch

(produced by unhashing the branch address) is the beginning of taken ac ofanin al ndth is alredyrincl

any subroutine, detection of the error is delayed until that sub- tkn r facniinlbac oeta sarayicue
aouiny subcout etec 22].omthenerro istruction dshig wh in a maximal path. A maximal path is formed by adding a node
routinecoees [2] obinn nstrutionahn g ith (from a contiguous location if possible) and the connecting arc
CSM decreases the probability of theseo-ancy even be until the maximal path merges with another maximal path or it-
cause the fraction of CALLs in a pseudo-random distribution of self, or a program exit is reached. A justifying signature is em-
instructions is generally significantly less than the fraction of bde ntemxmlpt ota h ahssgaueeul

CAL~ in proram.bedded in the maximal path so that the path's signature equals
CALLs in a program. the merge location's intermediate signature. The program's ref-

In [22], CSM was shown to be more efficient than previous erence signature is the signature of one maximal path that ends

3

at a program exit. A justifying signature is embedded in other tics used in [22], FOR, WHILE, and DO contain 22% of the to-
maximal paths that end at a program exit so that the path sig- tal signatures. Thus, signature caching can reduce CSM
natures equal the reference signature. CSM requires only two memory overhead from a range of 3 to 7% [221, to as low as 2.3
signatures for the program graph in Figure 3: the program refer- to 5.5%.
ence signature from maximal path ABC and a justifying sig-nature embedded in maximal path D. The optimum cache size depends on a few factors. A largercache allows the signature compiler to eliminate more justifying

2.3 Signature Caching signatures, but increases the monitor's cost. Context-switch
time increases with cache size because the signature cache is

In [22], CSM was shown to achieve a theoretical lower bound pait of the process state that must be saved when a context
for the number of signatures that must be added to a program, switch occurs.
assuming that the monitor contains no memory other than a
register for accumulating the run-time signature, and that
control-flow error detection coverage is 1-2- ' for a w-bit sig- 3. Short Error-Detection Latency
nature. Memory overhead can be further reduced by relaxing Computers used in critical applications generally contain single-
these assumptions and adding a small signature cache to the Cer s se in critcadaplctinge-error-correcttng/double-error-detecting (SEC/DED) memory.
monitor. Within each program loop, a CSM justifying signature This section presents an instruction hashing technique that
provides the monitor with the correct intermediate signature dramatically reduces signature-error detection latency by ex-
when the processor returns to the loop's first location. ploitingthe SEC/DEDcode.
However, the monitor previously calculated and discarded this
intermediate signature. The proposed monitor stores each cal- 3.1 A New SEC/DED Code
culated intermediate signature and its corresponding address in a
small cache. For simplicity, a direct-mapped cache [19] can be Figure 4 illustrates an SEC/DED code word [II] ck(X) at loca-

used. When a branch instruction is executed, and the instruction tion k that consists of the w-bit instruction word Wk and

is not followed by a justifying signature, the monitor compares 2+log2w = m check bits. The code word cl(X) is the matrix

the branch's destination address with the addresses in its cache, product of Wk and the code's generator matrir [11]. The

and copies the corresponding intermediate signature into its sig- SEC/DED Hamming code [11 is well suited for bit-serial coin-

nature register when a match occurs. Given the signature-cache munication because the decoder can use a simple linear-

size, the signature compiler can determine which of the CSM feedback shift register (LFSR). For computer memory, Hsiao's

justifying signatures can be removed from program loops. For [8] SEC/DED code is widely used because it optimizes parallel

the program in Figure 3, a cache larger than node D allows node decoding.

D's justifying signature to be eliminated. Thus, signature cach-

ing uses only one signature for this program, the reference sig- W

nature from maximal path ABC.

To avoid reduced error detection coverage, signature caching Figure 4: SEC/DED Code Word.

must be used with instruction hashing. Without instruction A new code is proposed that uses instruction hashing and an
hashing, an error that occurs in a loop where the justifying sig- SEC/DED code to reduce error-detection latency. An even
nature was removed, and that is not detected at the loop's end, is weight [11] w+m bit hashing vector sk(X) is formed using the
undetectable. This occurs because the error-free intermediate intermediate signature Sk. For example, the vector can be
signature of the loop's first location is copied from the cache formed by dividing the w-bit intermediate signature into m
after the branch instruction at the loop's end is executed. Using groups, calculating an even parity bit for each group, and then
instruction hashing, a valid intermediate signature is copied appending the m parity bits to the intermediate signature. Any
from the cache following an error only if an executed pseudo- even-weight vector is a multiple of (1+X) [11]. Thus:
random instruction is a branch to a location contained in the
cache. Because the cache is small, only a few instructions from s(X) = (l+X) qk(X) (2)

the vast instruction space (e.g. 232) cause such an event Thus, e new code word, Ck(X). is the SEC/DED code word XORed
the decrease in error-detection coverage is negligible. with the hashing vector:

A technique's memory overhead can be estimated using high- C(X) = e(X) + st(X) (3)
level language control-flow constructs, by determining the num-
ber of signatures required for each construct type and determin- Figure 5 illnstrates the decoding organization of the monitor,
ing each type's average size [22]. CSM requires one justifying memory, SEC/DED decoder, and instruction execution unit.
signature for each construct that contains a conditional branch: During program execution, the monitor generates the run-time

IF, IF-ELSE, SWITCH, FOR, WHILE, and DO [22]. Signature intermediate signature Sk', and forms the even-weight unhashing
caching can remove the signature from those constructs that vector si'(X). Using st'(X), the monitor unhashes the vector read
contain a loop: FOR, WHILE, and DO. For the program statis- from memory, Ck(X),

4

o Ut A Hamming code word is a multiple of (I+X)p(X), where p(X)
I t--is a primitive polynomial of degree m-i [11]. A Hamming

W , I DecoSEC/DED decoder divides the received vector by (I+X) and by
Wk) 4SEiCIED Decoder p(X) to produce the remainders (syndromes) r, and r2 , respec-

tively [II]. For the new code, both terms of the received vector
Si Monitor c '-,i. in equation (5) are multiples of (I+X). thus rI = 0. The

I E SEC/DED code word Ck(X) is a multiple of p(X). Because

Ck (X) f corection (l+X)ek(X) is a random value with respect to p(X), the
P u Msyndrome r2 is uniformly distributed over the 2m-1 possible

I o Ieoy values. With probability 2r ' l , r2 = 0 and the vector is assumed

to be error-free. With probability 1-2 ' 1, r2 * 0 and the

FigureS$: Decoding Organization. decoder reports an uncorrectable error [11].

The vector Ck(X) is received by the SEC/DED decoder. For Hsiao's code, each column of the parity check matrix

[11] has odd weight [8]. For the even-weight error vector form

equation (5), Hsiao's decoder produces an even weight

3.2 New Code's Performance syndrome, because the syndrome is the sum of an even number
of odd weight columns. All but one of the 2"1-1 even weight

The correction/detection performance of this code is analyzed syndromes correspond to an uncorrectable error. The remaining
assuming a single fault. If a memory error ek(X) occurs at loca- even weight syndrome, the all zeros syndrome, indicates no er-
tion k, Ct'(X) = ck(X) + sk(X) + ek(X). From the single fault as- ror. Thus, when used with the new code, Hsiao's decoder
sumption, the intermediate signature is error-free because it is detects signature errors with the same probability as the Ham-
derived from previous instructions, i.e. sk(X) = sk(X). Sub- Ming code.
stituting these expressions into equation (4) produces the vector
received by the SEC/DED decoder. For a 32-bit processor, an SEC/DED decoder detects the sig-

nature error with probability 63/64 before the first program
C lk(X) = l(X) + sk(X) + ek(X)I + sk(X) word is executed following an error, and if the error remains un-
C;(X) = C(X) + ek(X) detected, with probability 63/64 before subsequent words are

executed. The average error detection latency for this geometric
This same vector would be received by the decoder if the series is (1-63/64)1(63/64) = 0.016 program memory cycles.
memory error occurred without instruction hashing. Thus, the This average latency is more than 60 times shorter than the best

SEC/DED capability still exists for this new code. existing latency-reduction technique [22]. Moreover, this short
latency is achieved without increasing memory oveshead.

Using the new code, the SEC/DED decoder also detects sig-

nature errors. If the run-time intermediate signature contains an The new code facilitates recovery from transient errors. When
error at location k, that error is included in the even weight vec- the decoder reports an uncorrectable error, the processor as-
tor formed by the monitor. The unhashing vector sk'(X) contains sumes that the error is a transient signature error, and invokes a
an error of the form: rollback procedure (e.g. [20]) that restores the processor and

monitor to a previous state. The error is deemed uncorrectable
s(X) (I+X) q() only if the rollback fails. The new code's short latency sig-

sk(X) = (I+X) [qk(X) + ek(X)] nificantly reduces the size and complexity of the rollback buf-
fers. For example, saving a single state for a 32-bit processor

Expanding the terms, andusing equation (2): allows >98% of transient signature errors to be tolerated. The
si(- sk(X) + (+X) ek() short, predictable recovery time is well matched to the needs of

real-time systems. In addition to transient processor errors, tran-

From the single fault assumption, the memory at location k is sient monitor errors can be detected and corrected, without

error-free, tuns Ck'(X) - CkM(). The vector received by the duplicating the monitor as required by previous techniques [12].

SEC/DED decoder, c(X), can be determined by substituting This approach requires the memory bus width to increase to

w+m bits from w bits so that the encoded check bits can be writ-

Ce'(X) = Ck(X) + sk(X) + (+X) ek(X) ten and read along with the encoded instruction. In addition to
the approach's aforementioned benefits, single-bit bus errors ae

Substituting the expression from equation (3) for Ck(X): correctable, even-weight bus errors are detectable immediately,

and other bus errors are detectable with high probability after a
Ck (X) = Ck(X) + sk(O + sk(X) + (+X) ek(X) short latency.

Ce(X) = Ck(X) + (1+X) ek(X) (5)

S

4. Computer Virus Resistance Third, the CSM technique uses BAH to eliminate justifying sig-
natures following CALLs (22]. The intermediate signature of

This section proposes extensions to instruction hashing that each subroutine's first location is a fixed value, e.g. 0. For virus

provide significant resistance to computer virus attacks. resistance, these constant intermediate signatures must be

4.1 Modifications to CSM eliminated. This can be done by reinstating a justifying sig-

nature after some CALLs, using the technique illustrated in

Instruction hashing combined with CSM provides some resis- Figure 7. A subroutine is signatured as a pan of a maximal path

tance to computer virus attacks because a program's assembly that contains a CALL to the subroutine. A justifying signature

code is encrypted using CSM's pseudo-random intermediate is not needed after this CALL. A justifying signature is em-

signatures. However, this combination contains weaknesses that bedded after other CALLs to the subroutine so that the path's

must be eliminated for the virus resistance to be significant- signature equals the intermediate signature of the subroutine's

first location. A stack is added to the monitor to save the inter-
First, the typical CSM signature function, a cyclic-redundancy mediate signature at a CALL's justifying signature, which is

check (CRC) polynomial, allows the program's plaintext to be used to derive the intermediate signature at the return (next)

readily deduced from the hashed program using well known location.

methods [2]. Instead, this function must be replaced by a cryp-

tographic function. The external structure of the cryptographic Main

function is illustrated in Figure 6. The inputs to the function V Subroutim A

are the instruction word Wk . the other monitored control bits Ck CALLA
that occur during the execution of Wk, the function's previous S, V S, $eXtntr- 5

output Sk, and a program key KP that the signature compiler lnmmd aie

selects at random for each program. The resulting intermediate CALL A Signs

signature SW is used for hashing and unhashing Wk,,. RETURN S S.

SC J Figure 7: Signaturing Subroutines.

-Fourth, the program's initial intermediate signature, reference
signature, and key must be securely stored, and then be avail-

able to the monitor when the program executes. Also, when a

context switch occurs, the contents of the signature register, sig-
Sk+1 nature cache, and stack must be securely stored, and then res-

Figure 6: Cryptographic Signaturing Function. tored when the process resumes. In both cases, these data can

be encrypted and decrypted using a cryptographic function con-
To avoid reducing processor performance, a hardware signature tained in the monitor. This function need not execute in real

generator should execute the function in real-time, i.e. the result time and might be unrelated to the real-time cryptographic func-

Sk+l should be available when the memory fetch of Wk+, com- tion. This function's key can be loaded during system genera-

pletes. Also, the key should be difficult to deduce by examining tion and stored in non-volatile memory that is not readable by
the function's outputs for a known set of inputs, a known plain- the processor. The trusted and encrypted signature compiler

tewu attack [2]. In practice these requirements are likely to con- writes to the monitor the plaintext of the program's key, initial

flict, with performance taking precedence for most applications. intermediate signature, and reference signature. The ciphertext

The performance requirement may restrict the possible functions of these data is mad by the compiler and stored with the

to those for which the program is not theoretically secure encrypted program. When the program executes, the processor

[2] against a general cryptanalytic attack. However, practical delivers to the monitor the ciphertext, which is decrypted and
security against a virus attack can still exist. A virus has limited used internally. Similarly, when a context switch occurs, the

resources: its size and hence its ability to attack are constricted; ciphertext of the contents of the signature register, cache, and

its computation facility is limited to the host computer, exces- stack are read and stored by the processor, and later decrypted

sive execution time can make the virus conspicuous. by the monitor. The processor cannot read the plaintext of the

Second, the CSM technique (summarized in Section 2.2) derives various signatures or the key stored inside the monitor.

all intermediate signatures from the program's instructions and With these changes, instruction hashing poses a significant bar-

from the initial intermediate signature assigned to the program tier to virus attacks. Additional virus resistance can be had by

entry-node's first location (221. As proposed in [221, the exploiting the processor's complex internal behavior.

program's initial intermediate signature is the same for all
programs, e.g. 0. For virus resistance, the signature compiler 4.2 Monitor-Assisted Signature Compilation

selects each program's initial intermediate signature at random.
Previous signature-monitoring papers suggest using a software

signature compiler to generate a program's signatures. Al- that it can only be enabled by the trusted and encrypted sig-

though the signature compiler's complexity and execution time nature compiler during program installation. Thus, a virus can-

are important, they have not been considered in the literature. not receive monitor assistance when attempting to decrypt a

Error detection coverage can be increased significantly by in- program or encrypt itself. The virus must carry its own software

cluding the processor's internal control sequences (from decryption/encryption mechanism. Because the complexity of

microcode and hardware control lines) in the signature along the processor's internal operation must be reflected in this

with the awsembly code (16]. Ho. ver, genrating such sig- mechanism, it is likely to be large (which makes ui.; -,'.us con-

natures using software requires that the signature compiler in- spicuous), to be difficult to construct, and to execute slowly.

clude a model of the processor's control section. Using this

model, signature generation is equivalent to simulating the 4.3 Comparison with Previous Approaches

response of the processor's control section to each program in- Instruction hashing has many advantages compared with pe-
struction. Besides adding significant complexity to the sig- vious approaches to computer virus detection. Various tech-
nature compiler, compiler throughput is significantly reduced. niques have been proposed that use cryptographic checksums to

Minor modifications to the monitor and processor can create a ensure program integrity when a program is loaded, e.g. [4].

new instruction-execution mode that allows the monitor's Unlike these techniques, instruction hashing also ensures in-

hardware signature-generator to assist with signature compila- tegrity during program execution. For example, instruction

tion. ENTER MODE and EXIT MODE instructions are added hashing could detect (and preclude) the "fingerd" attack used by

to the instruction set. While the new mode is enabled the fol- the Internet Worm [17]. Cryptographic checksums must be

lowing occurs: (1) the monitor does not unhash instructions, (2) securely stored, otherwise a virus can attach to a program and

instruction output (store to register or memory) is blocked, and substitute a new checksum that reflects its changes. Instruction

(3) the program counter (PC) always increments, i.e. PC = PC + hashing requires no secure storage outside the monitor.

1. The compiler constructs a code segment that includes the in- Contrasted with the encrypted-graph approach [9] (summarized

struction sequence that is the target of signature generation, in Section 1.2), instruction hashing can be applied where context

bracketed by delimiters as illustrated in Figure 5. The leading switching is frequent, it works in a memory hierarchy without
delimiter is a hashed ENTER MODE followed by a justifying complication, and it requires less memory overhead. Using in-

signature that equals the intermediate signature of te struction hashing, a monitor failure does not make the system

sequence's firt instruction. The trailing delimiter is EXIT insecure because the failure can be detected by other processor

MODE. detection mechanisms. The encrypted-graph approach must

duplicate the monitor to create a fail-safe system. Unlike the
X ET MODE Q) S. encrypted-graph approach, instruction hashing provides an ad-

SY ditional element of security: privacy. Instruction hashing is a
Y deterrent against unauthorized examination or use of a program.

target code wegmnt
Techniques have been proposed that use program encryption

I MT MODE and managed key distribution to prevent software piracy, e.g.
[7]. By employing an error-detection code, these techniques

Figure 8: Signature-Generation Code Segment. can detect modifications to the assembly code, including those

caused by computer viruses. Unlike these techniques, instruc-
Alte th segentis onstuctd, ETERMOD is nhahed tion hashing can detect control-flow errors, and control-bit er-

and executed, and then the monitor copies the justifying sig- to ahn a eetcnrlfo ros n oto-i r
and xected an thn te mnito coiesthejusifyng ig- rors from all levels in the control hierarchy, including assembly-

nature into its signature register. Next the target sequence is ex- o de mo a t in By a n g managed keyldi str b n -

ecuted. During execution, each intermediate is calculated and co n hah ing l so u ed e stre ie

saved in the monitor's cache. After EXIT MODE is executed,

the plaintext intermediate signatures are read by the compiler Unlike the aforementioned approaches, instruction bashing's

and hashed with the corresponding instructions in the target se- cryptographic function must execute in real-time. This may
quence to form the encrypted instructions. limit instruction hashing's effectiveness against a general cryp-

tanalytic attack. The other approaches can be based on non real -
Using monitor-assisted signature compilation, signatures that in- time functions that have established effectiveness, e.g. DES [6].
feude a large number of the internal control sequences are Instruction hashing's security may be derived in part from the
feasible. For maxium error detection coverage, a possible concealed details of the processor's internal implementation,
control sequences are included in the signatures. These sig- which could be exposed. Also, code that is encrypted using in-

natures can capture a significant portion of the processor's corn- ternal control sequences is implementation specific and will not

plex internal behavior. This complexity provides an instruction- execute on different implementations of the same instruction set

bashed program with significant additional virus resistance, architecture. This can be a limitation for heterogeneous multi-

The proposed instruction-execution mode must be secured so processor/multi-computer systems.

7

5. Summary [6] National Bureau of Standards, Data Encryption
Standard, FIPS Publication 46, U.S. Department of

The paper presents a new approach to concurrent error detection Commerce, (1977).

that combines signature monitoring with encryption. The new [7] Herzberg, A. & S. Pinter, Public Protection of Software,
approach, called instruction hashing, is shown to be robust be- ACM Transactions on Computer Systems 5,4 (Novem-
cause it allows several signature-monitoring advances. Follow- ber 1987). 371-393.
ing a signature erro, instruction hashing produces pseudo- [8] Hsiao, M., A Class of Optimal Minimum Odd-Weight-

random instructions, which can trigger various processor error- Column SEC-DED Codes, IBM Journal ofResearch &
detection mechanisms. This provides a redundant and diverse Development 14,4 (July 1970), 395-401.
means for detecting errors should the monitor fail in a mode that
prevents it from detecting or reporting errors. A signature cache [9] Joseph, M., & A. Avizienis, A Fault Tolerance Ap-

is proposed that reduces memory overhead to below that of t proach to Computer Viruses, pp. 52-58, Proc. Symp. on
Security and Privacy, IEEE, (1988).

best existing technique by eliminating justifying signatures from
loops. Instruction hashing prevents signature caching from [10] Joseph, M., Architectural Issues in Fault-Tolerant,
reducing error-detection coverage. Computers used in critical Secure Computing Systems, Ph.D. Dissertation, T.R.

applications generally use SEC/DED memory. A new code is #CSD-880047, UCLA Computer Science Dept., (1988).

proposed that uses instruction hashing to exploit the SEC/DED [11] Lin, S., An Introduction to Error-Correcting Codes,
code. The new code retains memory error correction/detection (Prentice Hall, 1970).
capability, and provides an average signature-error detection [12] Mahmood, A. & E. McCluskey, Concurrent Error Detec-
latency of 0.016 program memory cycles, 60 times shorter a tion Using Watchdog Processors - A Survey, IEEE
the best existing technique. This short latency facilitates low- Transactions on Computers 37,2 (February 1988),
cost recovery from transient hardware faults. Basic instruction 160-174.

hashing provides some resistance to computer virus attacks be- [13 Namjoo, M., Techniquesfor Testing of VLSI Processor
cause the program is hashed with CSM's pseudo-random inter- Operation, pp. 461-468, Proc. 12th ITC, IEEE, (1982).
mediate signatures. Minor modifications to basic instruction

hashing significantly increase virus resistance. Monitor-assisted [14] Namjoo, M., Cerberus-16: An Architecture For a
signature compilation is proposed, which allows numerous in- General Purpose Watchdog Processor, pp. 216-219,signtureProc. 13th FTCS, IEEE, (1983).
ternal control sequences to be included in a program's sig-

natures. Hashing instructions with these signatures further in- [15] Schmid, M., R. Trapp, A. Davidoff & G. Masson, Upset
creases virus resistance because the virus requires inferred Exposure by Means of Abstraction Verification, pp.

details of the processor's internal operation. Instruction hashing 237-244, Proc. 12th FTCS, IEEE, (1982).

is a low-cost approach that is weU suited for applications that [16] Schuette, M. & J. Shen, Processor Control Flow
must tolerate transient hardware faults, detect permanent Monitoring Using Signatured Instruction Streams, IEEE
hardware faults, and resist attacks by computer viruses. Transactions on Computers C-36, 3 (March 1987),

264-276.
Acknowledgement [17] Spafford, E., The Intemet Worm: Crisis and Aftermath,

Communications of the ACM 32, 6 (June 1989),

This work was supported by the Office of Naval Research 678-687.

(ONR) under contract N00014-86-K-0507. [18] Sridhar, T. & S. Thatte, Concurrent Checking of

Program Flow in VLSI Processors, pp. 191-199, Proc

References 12th ITC, IEEE, (1982).

[19] Stone, H., High-Performance Computer Architecture,
[1] Aho, A., R. Sethi, and 3. Ullman, Compilers: Principles, (Addison-Wesley, 1987).

Techniques, and Tools, (Addison-Wesley, 1985).

[20] Tamir, Y., M. Tremblay & D. Rennels, The Implemen-
[2] Beker, H., and F. Piper, Cipher Systems: The Protection tation and Application of Micro Rollback in Fault-

of Communications, (John Wiley, 1982). Tolerant VLSI Systems, pp. 234-239, Proc. 18th FICS,

[3] Cohen, F., Computer Viruses: Theory and Experiments, IEEE, (1988).

pp. 240-263, 7th National Computer Security Conf.,, [21] Wilken, K. & J. Shen. Embedded Signature Monitoring:
(Sept. 1984). Analysis and Technique, pp. 324-333, Proc. 17th ITC,

[4] Cohen, F., A Cryptographic Checksum for Integrity IEEE, (1987).

Protection, Computers & Security 6, 6 (Dec. 1987), [22] Wilken, K. & J. Shen, Continuous Signature Monitor-
505-510. ing: Efficient Concurrent-Detection of Processor Con-

trol Errors, pp. 914-925, Proc. 18th ITC, IEEE, (1988).
[5] Denning, P., Computer Viruses, American Scientist 76,

(May-June 1988), 236-238.

. . +

MEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. 6. JUNE 1990 629

Continuous Signature Monitoring: Low-Cost
Concurrent Detection of Processor Control Errors

KENT WILKEN, MEMBER, IEEE, AND JOHN PAUL SHEN, MEMBER, IEEE

AbAtucir-This paper presents a low-cost approach to concurrent de-
tetim of processor control errors that uses a simple hardware monitor Processor
ad signatures embedded Into the executing program. Existing signs-adrs
ture-moultoriag techniques detect a large portion of processor control daia
sen at a fraction of the cost of duplication. Analytical methods de-
veloped in this paper show that the new approach, continuous signa-
tare monitoring (CSM), makes major advances beyond existing tecb-
iqueos CSM reduces the fraction of undetected control-flow errors by

orders of magnitude, to less than 10'. The number of signatures Fig. i. Typical processor-monitor organization.
h theoretical minimum, lowered by as much as 3 times to a

rane r 4-11%. Signature cost Is reduced by placing CSM signatures Recently, researchers have proposed concurrent error
at locations that minimize performance loss ad (for some architec- detection using a behavioral abstraction of the executing
toros) memory overhead. CSM exploits the program memory's SEC/
DED cede to decrease error-detection latency by as much as l tmes, program that is monitored for runtime violations [11],
to 0.916 program memory cycles, without increasing memoy over- [14], [15], [17], [18], [19], [20], [22], [23], [29], [34].
head. This short latency allows transient faults to be tolerated. Abstractions can be formed using various aspects of pro-

gram behavior, including control flow, memory access,

I. INTRODUCTION input-output, and object type or range. Fig. 1 shows an
organization of a processor, the monitor, and memory.

ONCURRENT error detection is necessary to ensure An advantage behavior-based error detection has over the
.reliable computer operation. Although permanent structure-based approach is that errors from any source

hardware faults can be detected using built-in self-test are potentially detectable, including software and hard-
(BIST) or an external tester, concurrent detection must be ware design faults, as well as permanent and transient
used to detect errors caused by transient faults. Transient hardware faults.
faults are increasing as device size decreases because the Behavior-based error detection may prove to be more
energy difference between logic levels is lower and be- cost effective than the structure-based approach for most
cause the higher possible speeds reduce timing margins applications. A cost-effective abstraction must allow high
126]. At the same time, the number of devices per com- error-detection coverage using a simple monitor. Experi-
puter is growing, more computers are subjected to noisy mental comparison of various abstractions shows that
environments, and computer reliability requirements are control flow offers the most error-detection potential [22].
more stringent. Several researchers have proposed techniques that detect

Traditional approaches to concurrent error detection add control-flow errors using a simple monitor and signatured
redundancy based on a computer's structure. The most programs [5], [11], [18], [191, [23], [25], [28], [29], 131],
common approach is structural duplication, comparing the [33], [34], [35], an approach we call signature monitor-
output of two identical modules. Although effective, du- ing. A prototype system demonstrates that signature mon-
plication is too expensive for all but a few applications. itoring provides significant error-detection coverage at a
Redundancy can also be added by decomposing a com- fraction of the cost of duplication [23].
puter into smaller structures, and then applying the most Signature monitoring can be viewed as concurrent sig-
efficient error-detection technique to each substructure. nature analysis [6], with the analyzer and the reference
Redundancy is less than 100% if any substructure is signatures included in the system, and the executing pro-
checked using a technique that is more efficient than du- gram used as the test stimulus. Fig. 2 shows an assembly
plication. A self-checking processor with 40-60% redun- code segment that is signatured using the basic technique.
dancy was implemented using this approach [8]. The signature compiler divides the code into basic blocks

[1], computes each block's reference signature, and then
Manuscript received November 8, 1988; revised August 16, 1989. This embeds a signature instruction at the block's end. The

work was supported by the Office of Naval Research under Contract
40001446-K0507. This paper was recommended by Associate Editor signature instruction has a field that contains an identify-
V. K. Agarwal. ing opcode, and a field that contains the signature. The

The authors are with the Center for Dependable Systems. Department opcode could be a coprocessor opcode already includedof Elcria and Co mpter Engineering. Carnei el n O / e iyPittburgh. A. r negit Mellon Univty. in the processor's instruction set, or it could be a specific

IEEE Log Number 9034772. addition to the instruction set.

0278-0070/90/0600-0629$01.00 @ 1990 IEEE

630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. 6. JUNE 1990

ing four sections present the techniques that provide the
improvements, and develop analytical methods for quan-

Ss iV" ,tc tifying the properties. In Section VI, these analytical
methods are used for a quantitative comparison of the
CSM approach and existing signature-monitoring tech-
niqucs. The final section summarizes the results and out-

OA 'lines plans for future work.

II. ERROR DETECTION COVERAGE
Fig. 2. Basic signature-monitoring technique. Signature monitoring detects two types of errors [291,

control-bit errors and control-flow errors. Control-bit er-
During execution, the monitor observes te -xecuted mrs occur when a program is executed in correct order

instructions and generates each basic block's runtime sig- but one or more of the monitored control bits is altered.
nature using dedicated hardware. At each signature in- A control-flow error occurs when the instruction execu-
struction, the processor executes a NOP while the monitor tion sequence is incorrect. A good understanding of con-
compares the runtime and reference signatures, declaring trol-bit error detection coverage comes from prior re-
an error if they differ. The signature function V is typi- search. Mahmood and McCluskey [16] show that
cally a cyclic-redundancy check (CRC) polynomial so that signature monitoring can detect all single-word and most
the runtime signature can be generated using a parallel- memory-column errors. Work on PLFSR aliasing for sig-
input linear feedback shift-register (PLFSR). nature analysis also applies to control-bit error coverage

The signature can include deterministic bit sequences for signature monitoring. Williams et al. [36] show that
from any level in the control hierarchy: assembly code, a PLFSR based on a primitive polynomial [21] in general
microcode, or hardware control lines. Generally, data se- produces less aliasing than one based on a nonprimitive
quences cannot be signatured because they are not deter- polynomial. Iwasaki [10] shows that multiple bit errors
ministic. For maximum error-detection coverage, control can be detected by using a Reed-Solomon code [21] as
bits from all levels can be included in the reference sig- the signature function.
natures that are embedded in the assembly code. Without Control-flow error detection coverage has not been
loss of generality, the remainder of this paper will con- thoroughly studied. The subject's only treatment [16] pro-
sider assembly code signatures that could also incorporate poses that control-flow errors can be modeled as control-
lower-level control bits. bit errors, and concludes that control-bit coverage analy-

A signature-monitoring technique's effectiveness can be sis applies to both error types. However, this section
characterized by five properties: (1) error-detection coy- shows that control-flow error coverage is a distinct prob-
erage, (2) memory overhead, (3) processor-performance lem, and develops a method for analyzing control-flow
loss,. (4) error-detection latency, and (5) monitor com- error coverage.
plexity. Existing signature-monitoring techniques im-
prove upon the basic technique in one or more of these 2.1. Control-Flow Error Detection Coverage
properties. Namjoo [18] proposes a technique that en- The signature of a path of length j is the result of a
codes into each reference signature a path of instructions series of intermediate calculations performed at each word
that can include multiple basic blocks. This technique re- in the path:
duces memory overhead and performance loss because not Sk = V(Sk, Wk I
every block requires an embedded signature. Namjoo [19]
also proposes eliminating performance loss by storing sig- where k ranges from I to j, V is the signature function, So
natures in memory that is local to the monitor. Schuette is a specified initial value, and Wk - I is the word at loca-
and Shen [23] propose a technique that eliminates the tion k - 1. Location k is associated with intermediate
signature storage location that normally follows a branch signature Sk, which for k > 0 is the signature of the sub-
instruction, thus reducing memory overhead and perfor- path [0, k - 1]. The last intermediate signature, S, is the
mance loss. path's signature.

However, all of the proposed improvements degrade Intermediate signatures determine if a control-flow er-
one or more of the other signature-monitoring properties. ror is detectable. Normally, a program transitions from
The techniques that reduce memory overhead also in- the current location C to a next location D. A control-flow
crease detection latency because the distance between ref- error causes a transition to a different location D*. If SD.
erence signatures expands. Namjoo's proposal to elimi- = SD, the signature calculation continuing from D* will
nate performance loss increases memory overhead because produce a runtime signature that matches the reference
links must be added between reference signatures to allow signature of the path that contains D*, and the error is
the monitor to find the correct reference signatures as the undetectable. If SD. * SD, the runtime and reference sig-
program executes. natures will differ, and the error is detectable.

Continuous signature monitoring (CSM), the new ap- The fraction of undetected cerntrol-flow errors can be
proach proposed in this paper, makes major improve- estimated using intermediate signatures. Each location's
ments in all signature-monitoring properties. The follow- intermediate signature is determined, and all locations

WILKEN AND SHEN: CONTINUOUS SIGNATURE MONITORING 631

with intermediate signature i are grouped in Di. All lo- C"' w er

cations with a destination in Di are grouped in Ci. A con- P.2
trol-flow error is assumed to emanate from any program co,,e
location with equal probability and errantly transition to I

any program location with equal probability. Let di denote J..2

the size of Di, ci denote the size of C,, and m denote the Poo
number of program locations. The fraction of undetected 2'

control-flow errors originating from a specific location in ,€,.-
Ci is (di-l)/(m-l) -(d-l)/m form>>1. The HaVW P Q. sem
fraction of control-flow errors that originate from all lo-
cations in Ci is clm. Thus the total fraction of undetected ,-o1)
control-flow errors is e: BrancT~ I/1

e ft _ (di-_ I)cJm 2. (2)] ;-
e d)Fig. 3. Model of BAH control-flow error detection.

2.2. Correlated Intermediate Signatures
It follows from the preceding analysis that undetected jump is taken to an arbtitrary location, where the error is

control-flow errors are a minimum if intermediate signa- possibly detectable. This event is termed an induced con-
tures are uniformly distributed. Correlation among inter- trol flow error.
mediate signatures increases the size of certain groups, Induced control-flow errors cause many signature errors
and hence, decreases control-flow error coverage. Exist- to be undetectable. When a branch is taken, the BAH
ing signature-monitoring techniques use a fixed value for monitor sets the runtime intermediate signature to So. Thus
So, the initial intermediate signature of each path. Thus an induced control-flow error that lands at the be-
the first location of each path is in Ds,, and the last loca- ginning of a path is undetectable. Fig. 3 shows a Markov
tion is in CS.. The intermediate signature of a path's sec- model of BAH control-flow error detection. The orisinal
ond location, S1, is a function of So and the path's first control-flow error is not detected with probability p , as
word, Wo. Correlated W0 values cause S, values to be determined by (3). The remaining errors are "possibly
correlated. Similarly, if paths begin with correlated sets detectable," and are detected with probability I - 2- v fn
of words, sets of intermediate signatures will be corre- the fraction b of blocks that .nd with a reference signa-
spondingly correlated. Kobayashi [12] shows a strong ture, or are not devected in those blocks because the run-
correlation exists among entire basic blocks, an artifact of time and reference signatures randomly match. The re-
common language constructs, macro expansion, etc. maining 1 - b blocks end with a branch instruction that

A lower bound on the fraction of undetected control- has a hashed branch address. The branch is not taken with
flow errors is set by considering only undetected errors probability 1 - t and the error is possibly detectable in
due to So. For average path length p, the fraction of lo- the contiguous block. The remaining branches are taken,
cations in Ds. is l/p, and the fraction in Csis I1p, thus: resulting in an induced control-flow error. With probabil-

-2 (3 ity I1/p, the induced control-flow error lands at the begin-ning of a path and is undetectable. Otherwise, the error is
Several studies report average block sizes range from 4 possibly detectable in the error-destination block. Of all

to 10 words [4], [12), [16], [18], [23]. Thus the basic possibly-detectable errors, b(l - 2v) are absorbed in
technique's average path size (one block plus one signa- the detected state and (I - b)t/p + b2 - v are absorbed
ture) is 5-i1 words. From (3), a lower bound on unde- in the not-detected state. Thus the estimated fraction of
tected control-flow errors for the basic technique is 1-4 %, undetected BAH control-flow errors is:
which is coverage of 96-99%. For a v-bit signature, con- 2
trol-flow error coverage for randomly distributed inter- e5tn - p + (1 - p 2)((l _ b)t/p + b2v)/
mediate signatures would be 1 - 2v, 99.9985% for a ((1 - b)t/p + b). (4)
16-b signature. Thus undetected control-flow errors are
largely the product of correlated intermediate signatures. Example values for b, p, and t derived from program sta-

tistics presented in Section VI (where various signature-
2.3. Coverage of Induced Control-Flow Errors monitoring techniques are compared) will be used to il-

Schuette and Shen [23) propose a technique called lustrate the significant decrease in control-flow error coy-
branch address hashing (BAH) that eliminates reference erage caused by BAH.
signatures that follow branch instructions, reducing the
number of signatures by as much as 50% [24] compared III. MINIMUM SIGNATURES

with the basic technique. The signature compiler replaces As noted in Section I, control-flow error detection coy-
each branch address by the branch address hashed (xoRed) erage can be high (I - 2 =v) if intermediate signatures
with its intermediate signature. During execution, the are randomly distributed. This section presents a theorem
monitor unhashes the address for the processor using the that sets a lower bound on the number of signatures needed
runtime intermediate signature. Following a signature er- to achieve coverage of I - 2 V for a random intermedi-
ror, the unhashed branch address is pseudorandom, and a ate-signature distribution. A new signaturing technique is

632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. 6. JUNE 1990

nature check for each of these maximal paths. For each
maximal path that ends by merging with another maximal
path or itself, the monitor must resolve the merge-location
intermediate signature to continue. This requires that v
bits be embedded for each of these maximal paths because

Fig. 4. Example program gmph. the intermediate signature is a v-bit random value. 0

3.2. Minimum-Signature Technique
presented that uncorrelates intermediate signatures and Namjoo's [18] path signature analysis (PSA) technique
meets this minimum-signature bound. uses justifying signatures to reduce the number of signa-

tures. A justifying signature is a word embedded in a path
3.1. Minimum-Signature Theorem that sets (justifies) the path's signature to a particular

A program can be represented by a program graph, a value. PSA constructs path sets that cover all legal se-
directed graph that represents each block by a node and quences of nodes in a program graph. All paths in a set
all legal transitions between blocks by an arc. Fig. 4 start at the same node, and share a common reference sig-
shows an example program graph. The program graph nature, embedded at the beginning of the starting node.
representation is used to develop a minimum-signature PSA embeds justifying signatures into selected nodes so
theorem and a new signaturing technique. that all paths in a set produce the same signature. The path

Definition 1: A maximal path is a path in a program sets for the program graph in Fig. 4 are I ABD, ABC)
graph that is formed starting at any node or arc that is not and I BD, BC). Reference signatures are embedded at the
included in a formed path, and continuing along any route beginning of nodes A and B. A justifying signature is
in the program graph until a node contained in a formed embedded in node C or D so that these nodes (and hence,
path or a program exit node is reached. the paths in the two path sets) produce the same signature.

The following theorem sets a lower bound on the num- Thus PSA uses three signatures for this program, com-
ber of signatures that must be embedded into a program, pared with four used by the basic technique. PSA's inter-
assuming: mediate signatures are correlated because each path has

I1) branches are either one-way (unconditional) or the same initial intermediate signature.1)branchesreeither one-way(uconditional) o mA new technique uses justifying signatures to uncorre-
two-way (conditional) (where nocessay, multi- late intermediate signatures and to lower the number of
way branches can be d);omposed into two-way signatures to the bound established by Theorem 1. These
branches);

2) the program graph can be determined at compile- are the technique's basic rules.

time and does not change during execution; 1) A program is partitioned into a set of maximal
3) the program has a single entry node; paths that start at the program's entry node and at
4) the monitor is memoryless except for the signature one outgoing arc of each conditional branch node.

register. 2) The initial intermediate signature of the maximal

Theorem 1: If a program has n conditional branches path that starts at the entry node is a fixed value,

and its v-bit intermediate signatures are randomly distrib- e.g., 0.
uted, then (n + I) v bits must be embedded in the pro- 3) The initial intermediate signature of each maximal
gram then (ntro1-)vobitsrmustoeemb in t -ro path that starts at an outgoing arc of a conditionalgram for control-flow error coverage of 1 - . branch node equals the signature of the path end-

Proof. This theorem is proved by first showing that a inah node.
program graph contains n + I maximal paths, and then ing at that node.

showing that each maximal path requires v embedded bits. 4) When a maximal path's initial intermediate sig-

It follows from Definition 1 that a maximal path that con- ate s res he maled.

tains a conditional branch node can contain only one of ate signatures are calculated.

the node's outgoing arcs, unless the maximal path starts 5) A justifying-signature instruction is embedded into

at one of these arcs. The outgoing arc not contained in each maximal path that merges with another max-
thismaxmalpat strtsanoter axial ath Ths aimal path or itself such that the path's signaturemaximal path starts another maximal path. Thus a equals the intermediate signature of the merge lo-

maximal path stats at an outgoing arc of each of n con- cation. For a maximal path that merges with it-
ditional branch nodes, and one stat at the program's en- self, the justifying signature must be embedded
try node, foratotal ofen + 1. between the merge location and the path's end.

A maximal path either ends at a program exit node, or 6) A justifying-signature instruction is embedded into
ends at the arc where it merges with another maximal path each maximal path that ends at a program exit such

or itself. The random intermediate-signature distribution that the path's signature equals the fixed termi-

implies that the program's control-flow error coverage is nation signature s, e.g., O.
at most I - 2'. For each maximal path that ends at an

exit node, if the runtime signature is not checked at the The new technique's justifying signatures cause the
path's end, arriving control-flow errors are undetected be- same signature St to be produced along any route through
cause the program terminates, and coverage becomes less a program from entry to exit. Thus this technique could
than I - 2". Thus v bits must be embedded for a sig- be viewed as a generalization of PSA that uses only one

WILKEN AND SHEN: CONTINUOUS SIGNATURE MONITORING 633

path set and one (fixed) reference signature to cover an executed rather than another does not cause a program
entire program. Error detection latency is generally long error. These sequences and their intermediate signatures
using the new technique because signatures can be only are redundant with respect to control-flow faults.
checked at program exits. This long latency is eliminated Second, the two locations that follow a conditional
by the companion latency reduction approach presented branch node have the same intermediate signature. A se-
in Section V. quence of words starting at one location that matches a

For illustration, this technique is applied to the program sequence starting at the other causes additional interme-
graph in Fig. 4. This graph can be partitioned into one of diate-signature correlation. This correlation is eliminated
three maximal-path sets: { ABD, C), (ABC, D), or by an additional rule: two signatures must be produced
I DBC, A). For the set (ABD, C), the intermediate sig- for each path that ends at a conditional branch node, one
natures of maximal path ABD are calculated based on the used for the intermediate signature of the branch not-taken
path's fixed initial intermediate signature. A justifying location, and the other for the intermediate signature of
signature is then embedded into node B or D so that the the branch-taken location. Two signatures are produced
signature of maximal path ABD equals the intermediate directly if the signature includes the processor control line
signature of node B's first location. Next, the intermedi- that indicates the result of the branch taken/not taken de-
ate signatures of maximal path C are calculated based on cision. Otherwise, the second signature can be derived
its initial intermediate signature, the signature of path AB. from the path signature, e.g., by complementing ore or
A justifying signature is embedded into node C so that the more of its bits. With this provision, the new technique
signature of maximal path C equals S(. The new technique uncorrelates all nonredundant intermediate signatures and
uses only two signatures for this program. In Section VI, thus provides control-flow error coverage of 1 - 2-'.
program statistics are used to show that this technique Section VI shows that undetected control-flow errors are
provides significant memory-overhead reduction com- reduced by orders of magnitude compared with existing
pared with existing techniques. techniques.

The initial intermediate signature of a maximal path that
3.3. Additional Signaturing Rules starts at an arc that is in a loop is not directly resolvable.

The new signaturing technique has some additional For example, for the maximal-path set { DBC, A) of Fig.
rules beyond the basic rules listed above. A maximal path 4, the initial inteimediate signature of maximal path DBC
may consist of a starting arc and zero nodes, because the depends on the signature of path DB, which depends on
starting arc may merge at a node contained in another the initial i:itermediate signature of maximal path DBC.
maximal path. However, each maximal path must contain Such a cycle is broken by labeling the initial intermediate
a location for its justifying-signature instruction. The fol- signature x and then calculating the maximal path's inter-
lowing rule accommodates zero-node maximal paths: a mediate signatures as a function of x. The value of x is
justifying signature instruction can be located after a con- resolved by equating a known intermediate signature to
ditional branch instruction, and can be included in the that intermediate signature's value as a function of x, and
maximal path that contains that node, or can be included then solving for x. For example, the signature of maximal
in the maximal path that starts at an outgoing arc of that path DBC as a function of x is equated to St to resolve x.
node. This signature-instruction placement is compatible This topology requires an added rule: for a maximal path
with instruction-set architectures thit use delayed branch- that starts at an arc that is in a loop, the justifying signa-
ing [30]. This rule can be implemented by adding a i-b ture must be embedded into the maximal path within the
field to the signature instruction that indicates whether the loop. For example, the justifying signature of maximal
justifying signature is contained in the path that includes path DBC must be embedded into node D or B.
the branch-taken arc, or the path that includes the branch- Exception handlers are signatured as separate programs
not-taken arc. Alternatively, for architectures that employ usirg the preceding technique. When an exception oc-
squashing, e.g., [31, the branch instructions' squash bit curs, the current signature is saved on a signature stack
can be used to indicate which of these paths contains the and the signature register is set to its fixed initial value.
justifying signature. When exception handling is complete, the current signa-

The initial intermediate signature of all maximal paths ture is restored from the stack.
but one is the signature of a preceding path. Because the
signature of each preceding path is a pseudorandom value, 3.4. Minimum Signatures For Subroutines
the new technique largely uncorrelates intermediate sig- The preceding technique and theorem are based on the
natures. However, two sources of correlation remain, assumption that branches are either one-way or two-way.
First, all paths that merge at a node have the same path A RETURN from subroutine instruction is in general a
signature. If two or more of the merging paths end with a multi-way branch and therefore requires separate consid-
sequence of one or more identical instructions, the inter- eration. This subsection develops a subroutine signatur-
mediate signatures of these sequences will match. For ex- ing technique that provides control-flow error detection
ample, this occurs where multiple paths merge at node x, coverage of 1 - 2 using a minimum number of signa-
and more than one of these paths end with the instruction tures.
JUMP (absolute address of node x). Interestingly, this A CALL node is followed in the program graph by the
correlation does not reduce control-flow error coverage subroutine's entry node as shown in Fig. 5. One maximal
because a fault that causes one of these sequences to be path that contains a CALL to a specific subroutine also

634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL 9. NO 6. JUNE 1990

Main ' .. 14.1. Signature Placement
ALLJIM Within the stated restrictions for loops, the new signa-

OP . .9 s, uring technique allows a maximal path's justifying sig-
suw"o--in. nature to be placed at any maximal-path location. A jus-

- e \tifying signature's cost at certain locations can be less than

RETuRN at others. Low-cost locations include (but are not limited
Snatues to) the following types: (1) Some architectures require

NOPS to be inserted into delay slots that the compiler can-
Fig. 5. Subroutine signaturing technique. not fill, or require NOPS to resolve pipeline interlocks that

the compiler cannot avoid [30]. For example, programs
for the MIPS-X architecture contain 16-18% NOPS [3]. A

contains the subroutine's entry node. This maximal path justifying-signature instruction that replaces a NOP incurs
determines the entry location's intermediate signature, S. zero cost. (2) Branch delay slots are sometimes filled with
A justifying signature is embedded into each of the other a replica of the branch destination's instruction, and the
maximal paths containing a CALL to the subroutine so branch is altered so that destination = destination + 1.
that each maximal path's signature is S,. For k CALLs to Embedding a justifying-signature instruction into such a
a subroutine, k - 1 signatures are used to justify the sig- delay slot precludes this performance optimization, but
nature at the entry node. does not increase memory overhead. This location's cost

Following the technique proposed in Section 111-3.2, a can be lower than the cost of a location that reduces per-
subroutine that has n conditional branches is partitioned formance and increase memory overhead. (3) Some pro-
into n + 1 maximal paths. This includes the maximal path gram locations are executed more frequently than others.
that contains the entry node, which is only partly con- Execution frequency can be estimated by profiling the
tamined in the subroutine. The signature of one maximal program. Except for a location that contains a NOP, a jus-
path that ends at an exit (RETURN) is designated as the tiying-signature instruction placed at a location that is
subroutine's characteristic signature, S. One justifying executed less frequently will incur less performance loss.
signature can be embedded into each of the other n max- Each location's cost can be determined as a function of
imal paths so that any path through the subroutine from the memory overhead'and the performance loss for plac-
entry to exit produces the same signature, S. Thus, n + ing a justifying-signature instruction there. Each node's
k - I justifying signatures are used for the subroutine and signature cost is the cost of its lowest-cost location. Each
its CALLs. maximal path's signature cost is the cost of its lowest-cost

Each subroutine return location starts a maximal path node. The maximal path's justifying signature is placed
that requires an uncorrelated initial intermediate signa- at the lowest-cost location in that node. The total signa-
ture. As illustrated in Fig. 5, the return location's inter- ture cost is the sum of all maximal-path signature costs.
mediate signature can be the subroutine's characteristic
signature Sc XORed with the intermediate signature from 4.2. Cost-Reduction Algorthm
the last location of the contiguous CALL node. The in- Program graphs can generally be partitioned into many
termediate signatures of return locations are correlated if maximal-path sets. A program with n conditional branches
paths that contain CALLs to the same subroutine end with can be partitioned intb at least 2" distinct maximal-path
a correlated word, because these paths have the same sig- sets, because the maximni path that starts at an outgoing
nature, S,. These intermediate signatures can be uncor- arc of each conditional branch node can start at either of
related by placing the respective maximal path's justify- the two outgoing arcs. The number of maximal-path sets
ing signature instruction at the path's last location, i.e., is generally greater than 2" because for a given set of start-
at the location after the CALL. At runtime, when a CALL ing arcs, a node with > 1 incoming arcs (a merge code)
is executed, the monitor saves on a signature stack the can be contained in any one of the maximal paths that
intermediate signature from the path's last location. When contains an incoming arc. The partitioning at this node is
a RETURN is executed, the contents of the signature reg- determined by the order of maximal-path formation. Dif-
ister (S, for error-free operation) are xoRed with the sig- ferent maximal-path sets can have d;fferent signature
nature retrieved from the stack to produce the return lo- costs. Partitioning the program graph to achieve mini-
cation's intermediate signature. mum signature cost is a combinatorial optimization prob-

lem [7] that is stated as follows.
IV. REDUCED SIGNATURE COST Partitioning Problem: Given a program graph and each

The cost of adding signatures to a program is processor node's signature cost, partition the graph into a maximal-
performance loss and memory overhead. The new signa- path set with the minimum total signature cost.
turing technique presented in Section III reduces the num- An iterative improvement algorithm is proposed that
ber of signatures and hence reduces cost. This section pre- produces a low-cost maximal-path set. The algorithm
sents a method for reducing the cost of the remaining sig- starts with an initial maximal-path set, and then itera-
natures. tively applies a series of local transformations that creates

WILKEN AND SHEN: CONTINUOUS SIGNATURE MONITORING 635

new maximal-path sets. If a transformation produces a swat" eft
lower cost maximal-path set, the new maximal-path set
replaces the original, otherwise it is rejected. The two lo-
cal transformations used by the algorithm are swap_out-
going, arcs and swap incomingarcs. and on the maximal

Swapoutgoing_arcs operates on the maximal path that Fig. 6. Horizontal signatures.
contains the conditional branch node i and on the maximal
path b that starts at an outgoing arc of node i. The path tency, without increasing memory overhead. A short er-
starting at the outgoing arc not contained in bi becomes a mr-detection latency allows transient faults to be tolerated
new maximal path. Maximal path bi is combined with the and prevents error contamination from spreading.
path that ends at node i to form a second new maximal
path. The new maximal paths cover the same nodes and 5.1. Vertical Signatures
arcs covered by the current maximal paths. If the com- Existing signature monitoring techniques encode an in-
bined cost of the new maximal paths is lower than that of struction sequence by embedding signatures in the verti-
the current maximal paths, they replace the current max- cal direction as illustrated in Fig. 2. Error-detection la-
imal paths, and the program's signature cost is reduced. tency can be long using vertical signatures because

Swap incoming.arcs operates on the maximal path m, detection is delayed until the signature is checked at the
containing merge node i and on the k maximal paths that path's end. Detection latency is measured in program
merge at node i. The path from the beginning of maximal memory cycles, the period from the start of one program-
path m, to the arc that merges with node i becomes a new memory access until the start of the next. One program
maximal path. Of the k maximal paths, one with the high- memory cycle may consist of multiple clock cycles for
est signature cost is combined with the path that begins at processing complex instructions, operand access, etc. The
node i to form a second new maximal path. The new max- average detection latency for an error that occurs in a path
imal paths replace the two current maximal paths if their of length p is (p - 1)/2 program memory cycles, if er-
combined signature :ost is lower. The complete algorithm rors are equally likely at all locations. The basic tech-
is described below in pseudocode. Section VI shows that nique's latency is 2-5 program memory cycles for its typ-
the new technique's signature cost can be significantly re- ical average-path-sizes, shown in Section 11-2.2 to be 5-
duced esing this algorithm. I I words.

Signature Cost Reduction Algorithm Detection latency is inversely proportional to the frac-
tion of memory used for vertical reference signatures. Ex-

reduce.signatre.cost () isting signature monitoring techniques [18], [23] reduce
begin memory overhead by using one vertical reference signa-

pathset = any maximal-path set; ture to cover multiple basic blocks and thus increase de-
reduced = TRUE; tection latency. The new signaturing technique proposed
while reduced = TRUE do in Section III fully extends this concept by using one

begin (fixed) reference signature to cover an entire program.
reduced = FALSE; Vertical reference signatures can be added to any of these
for i:= = to n do techniques to reduce latency; however, memory overhead

begin increases and processor performance is reduced. For ex-
lowered = FALSE; isting techniques that use a fixed initial intermediate sig-
swapoutgoingarcs (cond. branch node i); nature, adding vertical reference signatures decreases
if lowered = TRUE then coverage as determined by (3) because average path size

pathset : new.path.set; decreases.
end

for i: = 1 to # of merge nodes do 5.2. Horizontal Signatures
begin A new signature monitoring approach uses horizontal

lowered = FALSE, signatures to reduce detection latency. Fig. 6 shows the
swap incoming.arcs (merge node i); h bits added horizontally to each word for storing a hori-
if lowered - TRUE then zontal reference signature. The function H generates the

path-set = newpath-set; horizontal signatre for word j by operating on the in-
end struction sequence from the path's beginning through

end wordj. Horizontal signatures reduce detection latency be-
end. cause the monitor checks a signature at each program lo-

cation. There are 2" possible horizontal reference signa-
V. SHORT EAROR-DETECTION LATENCY tures, thus a random horizontal signature produced by an

This section presents a new signature-monitoring ap- error differs from the current location's reference signa-
proach that significantly decreases error-detection Ia- ture with probability I - 2-h, and the error is detected.

636 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. 6. JUNE 1990

Sw"" a"and compares them with their respective reference sig-
natures.A S hAlthough horizontal signatures can be combined with

any existing vertical-signaturing technique, the new ap-
Fproach proposed in Sections III and IV provides the high-

Fg. 7. Combinin horizontal and vertical signatures, est control-flow error detection coverage and the lowest

signature cost. Adding horizontal signatures to this ap-
An undetected error is detected with probability I - 2 - h proach results in a combination that provides the shortest
at each following location in the pat' because the error latency, the highest coverage, and the lowest signature
causes the function H to produce a pseudorandom run- cost. This approach is termed continuous signature mon-
time signature for each location. The average latency I itoring (CSM) because the horizontal signatures are
can be estimated by assuming an infinitely long path: checked continuously, and because the justifying signa-

tures maintain vertical signature continuity between max-I j2-h(l - 2-h) imal paths.

j" J 5.4. Combining CSM With Parity

[2-/(1 - 2-)]. (5) A computer's main memory generally contains either a

Replacing vertical signatures by horizontal signatures sig- parity code or an error correction/detection code. CSM
nificantly reduces detection latency if memory overhead can be combined with either of these codes to reduce error
is constant. For constant memory overhead, h = v/p. detection latency without adding horizontal memory over-
For the minimum size of h (1 b), p = v and the average head. This subsection presents a technique that combines
vertical-signature latency is v/2 program memory cycles, CSM with a parity code.
compared with a 1 cycle average horizontal-signature ia- For this technique, the parity bit normally stored at each
tency. As horizontal bits are added, the decrease in hori- location is replaced by a hashed parity bit: H* 0 P, where
zontal-signature latency is roughly exponential. For an H* is a function that generates a 1-b horizontal signature
equal vertical signature increase, vertical-signature la- based on the instruction sequence from the path's begin-
tency decreases only linearly. Moreover, horizontal sig- ning through word j - 1, and P generates the parity of
natures cause no performance loss because the signatures word j. The function H* is selected to equal one of the
are fetched in parallel with the program code. bits from the vertical intermediate signature generated by

Horizontal signatures have the drawback that they pro- the function V. This selection reduces signature compi-
vide lower error-detection coverage than vertical signa- lation time and requires less hardware for runtime signa-
tures for constant memory overhead. Horizontal-signature ture generation than if the functions V and H* were in-
coverage varies significantly with location in the path and dependent. Moreover, with this selection each maximal
with path length. A path's first word is included in each path's initial horizontal signature is defined, and a sepa-
of the path's horizontal signatures, as shown in Fig. 6. A rate mechanism is not required for justifying the horizon-
random signature error at the first location in a path of tal signature where maximal paths merge or end.
length p is detected by horizontal signatures with proba- The monitor unhashes the parity bit using the runtime
bility 1 - 2 -A . The path's last word is only included in signature bit H*', and passes the result to the parity de-
the last horizontal signature. An error at the last location coder. Assuming a single error, the parity decoder detects
is detected with probability 1 - 2- h. In contrast, a v-bit odd-bit memory errors or signature errors at each loca-
vertical signature can provide coverage of I - 2 -v at any tion. If H*' is error free, the bits received by the parity
location. If horizontal overhead equals vertical overhead, decoder are the same as if a standard parity bit were used,
then h - v/p or v = ph. Thus for equal overhead, ver- thus odd-bit memory errors are detectable. If H*' contains
tical signatures provide the same high coverage (I - 2Ph) an error, the single error assumption implies that the cor-
at all locations as is provided by horizontal signatures only responding memory location is error free. The parity de-
at each path's first location, coder detects the signature error because it receives an

error-free word with a complemented parity bit. Thus this
5.3. Two-Dimensional Signatures new code adds signature-error detection capability equal

Horizontal and vertical signatures can be combined so to one horizontal bit, without adding horizontal memory
that a short error-detection latency is ensured by the hor- overhead. From (5), error detection latency is I program
izontal signatures while high error-detection coverage is memory cycle. Section VI shows that this detection la-
provided by the vertical signatures. Fig. 7 shows a path tency is significantly shorter than the detection latency of
encoded with signatures in two dimensions. The signature existing techniques.
compiler first generates the vertical reference signature
using the function V, and then generates a horizontal ref- 5.5. Combining CSM With SEC/DED Codes
erence signature for each location (including the vertical A second technique is proposed for use with computers
signature's location) using the function H. During exe- that contain single-error-correcting/double-error-detect-
cution, the monitor regenerates both runtime signatures, ing (SEC/DED) memory. An SEC/DED code word [13]

WILKEN AND SHEN: CONTINUOUS SIGNATURE MONITORING 637

a nit TThis same vector would be received by the decoder ifgutin~nitev,*rthe memory error occurred usir, a standard SEC/DED

W; e.Cj (x) SC tcode. Thus the SEC/DED capability is maintained for this
new code:

M~niW cormlionUsing the new code, the SEC/DED decoder also de-
S+onio -tects signature errors. If the runtime intermediate signa-

C ,,, ture contains an error at location j, that error is included
in the even-weight vector produced by the monitor. The

M,= Mu--,,,]unhashing vector sj(X) contains an error of the form:

Fig. S. CSM-SECIDED decoding organization. s (X) = (1 0 X) q (X)

sj(X) = (I G X) [qj(X) G) ej(X)].
cj(X) at location j consists of the w-bit instruction word Expanding the terms, and using (6):
W and 2 + log2 w = m check bits. The SEC/DED Ham-
ming code [13] is well suited for bit-serial communication s (X) = s (X) E (1 0 X) ej(X).
because the decoder can use a simple linear-feedback shift
register (LFSR). For computer memory, Hsiao's [9] SEC/ From the single error assumption, the memory at lo-
DED code is widely used because it allows fast parallel cation J is error-free, thus CJ(X) d Cy(X). The vector
decoding received by the SEC/DED decoder, c (X),can be deter-

A new code combines CSM with an SEC/DED code to mined by substituting these expressions for sJ (X) and
reduce error-detection latency. An even-weight [13] w + C; (X) into (8):
m bit hashing vector sj(X) is formed using the interme- c(X) = Cj(X) 0 S(X) 0 (1 0 X) ej(X).
diate signature S. The vector consists of w zeros at the
bit locations that correspond to the instruction, and m - Substituting the expression from (7) for Cj(X):
1 b from Si and an even parity bit corresponding to the
check-bit locations. Any even-weight vector is a multiple C€(X) = i(X) E s(X) 0 s(X) 0 (1 0 X)ej(X)

of(l e X) [13]. Thus: cj(X) = cj(X) E (1 & X) ej(X). (9)

sj(X) = (1 0 X)qj(X). (6) AfHammingode wordis amultipleof(I @ X)p(X),
wherp()isapiiieplnmaofdge -1

The new code word, C(X), is the SEC/DED code word re p(X) is a primitive polynomial of degree m - I

xoRed with the hashing vector: [131. A Hamming SEC/DED decoder divides the received
vector by (1 0 X) and p (X) to produce the syndromes

Cj(X) - C(X) 0 s(X). (7) st and s2, respectively [13]. For the new code, both terms
of the received vector in (9) are multiples of (1 0 X),

Fig. 8 illustrates the decoding organization of the mon- thus sr = 0. The SEC/DED code word c(X) is a multiple

itor, memory, SEC/DED decoder, and instruction exe- tu p = . The (1 wr ce(X) is m ipe

cution unit. During program execution, the monitor gen- of p(X). Because (1 OX) ej(X) is random with respect

crates the runtime intermediate signature S, and forms to p(X), the syndrome s2 is uniformly distributed over

the even-weight unhashing vector s (X). Using 5 (X), the 2"' -I possible values. With probability 2"' ', s2 = 0
the monitor unhashes the vector ead from memory, and the vector is assumed to be error-free. With proba-
tebility 1 - 2" - , s2 * 0 and the decoder reports an un-
CJ(X). The vector cj(X) is received by the SEC/DED correctable error [13]. Thus the new code provides detec-
decoder:

tion capability equivalent to m - 1 horizontal signature
c()= 0C(X) @ s(X). (8) bits, without adding horizontal memory overhead. For a

32-b processor, m - 1 - 6 and the average error detec-

5.6. New Code's Performance tion latency from (5) is 0.016 program memory cycles.

The correction/detection performance of this code is Section VI shows that this detection latency is orders of

analyzed assuming a single error. If a memory error ej (X) magnitude lower than that of existing techniques.
For Hsiao's code, each column of the parity check ma-

occurs at locationj, C(X) - cj(X)) sj(X) ej(X). trix [13] has odd weight [9]. The even-weight error vector
From sig- in (9) produces an even-weight syndrome, because the
nature is error-free because it is derived from previous syndrome is the GF(2) [13) sum of an even number of
instructions, i.e., s(X) = sj (X). Substituting these odd weight columns. All but one of the 2" - 'even-weight
expressions into (8) produces the vector received by the syndromes indicate an uncorrectable error. The remaining
SEC/DED decoder: even weight syndrome and the all zeros syndrome indi-

c;(X) - [c€(X) 0 s(X) 0 ej(X)] 0 s(X) cates no error. Thus when used with the new code, Hsiao's
code provides the same detection capability as the Ham-

c€(X) - cj(X) 0 ej (X), ming code.

638 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. 6. JUNE 1990

5.7. Transient Fault Tolerance TABLE I
VERTCALOVEREADAND (REFERENCE SIGNATURES).

Previous signature monitoring work considers error de-

tection, but not transient-fault tolerance. CSM allows sig- sac PSA SIS CSM

nificant transient-fault tolerance. Most processors use a F 2(2) 1(Q) 2(1) 1(0)

pipeline with several stages to improve performance. Al- IF-ELSE 3(3) 1() 2(1) 1(0)

though an instruction's horizontal signature is checked at SWITCH 7() 3(0) 2(0) 3(0)

the pipeline's first stage, the instruction's effect does not FOR 3(3) 2(1) 2(1) 1(0)

occur for k stages. An errant instruction is detected with W 3(3) 2(1) 2(1) 1(0)

probability 1 - 2 -kh before its effect occurs. A transient O 2(2) 2(1) 2(0) 1(0)

fault can be tolerated with this probability by invalidating CALL 1(1) 0(0) I-.A(0)

the instructions that are still in the pipeline when a sig- RERN I(1 1(1) 1(t) 0(0)

nature error is detected, and then restarting execution at
the leading instruction's address. Because this same pro- TABLE 11
cess is used for handling other exceptions [3), transient RELATIVE CONTROL-FLOW CONSTRUCT USAGE.

faults are tolerated with little or no added complexity. For
a five stage pipeline where results are posted at the last IF IF-ELSE SWITCH FOR WHILE DO CALL RETURN

stage, e.g., [3], k = 4 and transient faults are tolerated o2 0.14 002 0 0.05 0.00 0.30 0.10

with probabilities 1 - 2 - 24 and 1 - 2- 4 for the SEC/
DED and the parity techniques, respectively.

TABLE III
5. Other CSM Benefits ESTIMATED MEMORY OVERHEAD.

Concurrent detection must be used to detect errors
caused by transient monitor faults. Existing techniques a, -PSA siS cSM

detect such errors by duplicating the monitor [17]. For veci , 6-15S% 6-15% 4-11%

CSM, transient monitor errors are detected by the SEC/ HMrIW 1 0 % % %

DED or parity decoder. Thus duplication is not needed
and monitor complexity is halved. CSM uses a recursive
application of behavior-based error detection: the proces- TABLE IV
sor's behavior is observed by a simple monitor, whose COMPARISON RESULTS SUMMARY.

behavior is observed by a simpler decoder (which can be B SIS CSM
totally self-checking).The processor's memory bus must be wide enough so T=mov 0-25% 12-21% 6-15% 4-11%

that the encoded SEC/DED or parity bits can be written
and read along with the instruction. With this provision, U 2-5 7-17 7-17 0.016-1.0

bus errors are detectable (or correctable) along with errors col*o
from other sources. CSM's encoded parity or SEC/DED Emw Cem- W % ".5-M9 65-93% N-9%

bits add to secondary (disk) memory overhead because 99 0 9 99ErrorVM 9999M 10D% W&93% 99-9999%

they must be stored along with the instructions and the
vertical signatures. However, certain secondary-memory
errors that are otherwise undetected, e.g., loading an in-
correct program page, are detected within a short latency II lists relative control-flow construct usage from [2],
by CSM. which is used for the numerical comparisons.

VI. COMPARISON wrrH EXISTING TECHNIQUES 6.1. Memory-Overhead
This section quantitatively compares the effectiveness The fraction of vertical overhead added by each tech-

of the basic technique, PSA [18], signatured instruction nique can be estimated using these data. The matrix prod-
streams (SIS) [23), and CSM. For this comparison, a pro- uct of Table II and each overhead column of Table I is
gram is assumed to be compiled from a structured high- each technique's weighted-average overhead per control-
level language (HLL). Typical HLL control-flow con- flow construct. This result for the basic technique times
tructs are: IF, IF-ELSE, SWITCH, FOR, WHILE, DO, the average words per block (4-10) is the weighted-aver-

CALL, and RETURN. Each control-flow construct cre- age words per control-flow construct. This result divided
ates a fixed number of blocks, e.g., Fig. 2 is an instance into each technique's weighted-average overhead per con-
of IF-ELSE, which creates 3 blocks. Table I lists the total trol-flow construct is the fraction of vertical overhead,
vertical overhead and the number of reference signatures shown in the first row of Table III. For CSM, each sub-
added by each technique for each control-flow construct. routine is assumed to have one RETURN, so that k is
(SWITCH is assumed to have four cases.) For CSM, k is estimated as CALLs/RETURNs. Table III's second row
the average number of CALLs to each subroutine. Table lists the horizontal overhead added by each technique, as-

WILKEN AND SHEN: CONTINUOUS SIGNATURE MONITORING 639

suming a 32-b word. Only PSA adds horizontal overhead, horizontal reference-signature bit(s) is encoded at each
two columns to indicate reference signatures and the end program location.
of a path. The first row of Table IV lists each technique's Program-Bounds Violations. Existing techniques do
estimated total overhead. CSM is seen to reduce total not detect control-flow errors that cause instruction exe-
memory overhead by as much as 3 times. cution from the data space, a program-bounds violation.

These techniques must be augmented with bounds check-
6.2. Error-Detection Latency ing hardware [23]. CSM detects program-bounds viola-

In Section V detection latency is estimated to be 2 to 5 tions without augmentation. Following a control-flow er-
program memory cycles for the basic technique, and 1 or ror that lands in the data space, the monitor unhashes the
0.016 cycles for CSM, using parity or SEC/DED pro- data's check bits (which should not be unhashed) and with
tected memory, respectively. Detection latencies for PSA probability 1 - 2 -h creates an error that is detected by
and SIS can also be estimated. The operation performed the decoder.
above on Table I's overhead columns is performed on the Stuck-Incrementing PC. Existing techniques do not
reference-signature columns to produce the fraction of detect control-flow errors caused by a stuck-incrementing
reference signatures: 3-8% for PSA and for SIS. This is PC. For this fault, program execution always increments
one reference signature for each 14-35 words, including from the current path's end to the contiguous path. A con-
vertical-overhead words. Thus the average detection la- trol-flow error occurs if these paths are not connected in
tency for PSA and SIS is 7-17 cycles. The second row of the program graph. Existing techniques do not detect this
Table IV lists each technique's detection latency. CSM error because all paths begin with the same initial inter-
decreases detection latency by as much as 1000 times. mediate signature. CSM detects this error because the in-

termediate signature of the contiguous path is not corre-
6.3. Control-Flow Error Coverage lated with the initial intermediate signature of the

In Section 11-2.2 control-flow error coverage is esti- succeeding path in the program graph.

mated to be 96-99% for the basic technique. Control-flow
error coverage can also be estimated for the other tech- 6.4. Control-Bit Error Coverage
niques. From the above result, PSA's path set size p is Each technique's control-bit error coverage can be es-
14-35 words. From (3), PSA's control-flow error cover- timated assuming a fault that causes a single word to be-
age is 99.5-99.9%. For SIS, a path starts after each CALL come a random value (e.g., a memory-bus timing fault).
and after each reference signature that does not follow a PSA detects 100% of these errors because it employs a
RETURN, thus p is 10-24 words. Vanous studies show signature with size equal to the word width w. The basic
that conditional branches are ts' "- roughly 65% of the technique and CSM detect these errors with probability 1
time [4]. For this estimate and 1 -e 11, the fraction of all - 2-v because their signatures are of width v and v <
branches that are taken t is 84%. The fraction of blocks w. For SIS, a control-bit error is equivalent to entering
b that end with a reference signature is 0.33. From (4), the "possibly detectable" state of Fig. 3. SIS's control-
SIS's control-flow error coverage is 85-93 %. CSM's ran- bit error coverage can be estimated by deleting the p-2

domly distributed intermediate signatures provide con- terms from (4) and using the values determined above for
trol-flow error coverage of I - 2 -', which is greater than b, p, and t in the resulting equation. The result is control-
99.9999% for a 32-b processor. Table IV's third row lists bit coverage of 85-93%. The last row of Table IV lists
each technique's control-flow error detection coverage, each techique's control-bit coverage. CSM is seen to have
CSM reduces undetected control-flow errors by orders of control-bit error coverage that is much higher than SIS,
magnitude. equal to the basic tecnnique, and essentially equal to PSA.

These coverage results pertain to single (transient) con-
trol-flow errors that land in the program space. Other types 6.5. Reduced Signature Costs
of control-flow errors must also be considered. For architectures that use delayed branching, delayed

Stuck-at PC/False Loops. Existing techniques do not loads, and/or resolve pipeline interlocks using NOES, the
detect a processor's program counter (PC) stuck at an ad- cost reduction algorithm presented in Section IV-4.2 re-
dress unless that address contains a reference signature, duces CSM's memory overhead and performance loss by
nor do they detect error-created loops that contain no ref- placing justifying signatures at locations with NOpS, at lo-
erence signature. The stuck PC has been identified as an cations with duplicate instructions, or at locations with
error that must be detected in safety critical systems [32]. low execution frequency. The fraction of justifying sig-
Sosnowski [27] showed that a control-flow error creates a natures used by CSM (4-11 %) is significantly less than

false loop with probability as high as 0.1. Existing tech- the 16-18% NOPS contained in programs for the
niques must use a watchdog timer [26] to detect a stuck MIPS-X architecture. Thus CSM's memory overhead and
PC and false loops. A watchdog timer increases monitor performance loss can be largely eliminated for MIPS-X
complexity and adds memory overhead for timer-reset or related architectures. Similar cost reduction is not pos-
commands, which also decreases processor performance. sible for existing techniques because they use reference
CSM detects false loops without augmentation because a signatures (3-8% or more) that must be placed at fixed

640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO- 6. JUNE 1990

locations that will generally not correspond to NoPs, and generally cannot detect data errors or errors in nondeter-
because they have more overhead to eliminate. CSM can ministic control sequences. Fault-injection experiments
be shown to have similar cost reduction advantages for show that these later errors account for roughly 20% of
other architectures, all processor errors [22), [23]. Low-cost techniques for

detecting these errors will be investigated. The ultimate
VII. SUMMARY AND FUTURE WORK goal is to combine one or more of these techniques with

This paper presents continuous signature monitoring CSM to produce a composite low-cost technique that pro-
(CSM), a new signature-monitoring approach that makes vides high coverage and concurrent-detection of all pro-
major advances beyord existing techniques in each sig- cessor errors, and provides high tolerance of all transient
nature-monitoring property. A new analytical method processor faults.
shows that control-flow error detection coverage is deter-
mined by the distribution of intermediate signatures. CSM REFERENCES
reduces undetected control-flow errors by orders of mag- I1] A. Alto, R. Sethi, and J. Uliman, Compilers: Principles. Techniques,
nitude because its intermediate signatures are randomly and Tools. Reading, MA: Addison-Wesley, 1985.
distributed. A theorem is presented that sets a lower bound [23 W. G. Alexander and D. Wonman, 'Static and dynamic character-
on the number of signatures that must be added to a pro- istics of XPL programs," Comput., vol. 8, pp. 41-46. Nov. 1975.

131 P. Chow and M. Horowitz, "Architectural tradeoffs in the design ofgram for a random intermediate-signature distribution. A MIPS-X," in Proc. 14th IEEE Comp. Arch., 1987. pp. 300-308.
new signaturing technique is presented that achieves this [41 1. DeRosa and H. Levy, "An evaluation of branch architectures," in
bound by partitioning a program into the minimum num- Proc. IEEE 14th Comp. Arch., 1987. pp. 10-16.

15] J. Eifert and J. Shen, "Processor monitoring using asynchronous sig-ber of paths, and then adding one justifying-signature in- natured instruction streams." in Proc. 14th IEEE FTCS. 1984, pp.
struction to each path. A new analytical method is pre- 394-3".
sented that allows techniques to be compared through (61 R. Frohwerk. "Signature analysis: a new digital field servicemethod," Hewlett Packard J., vol. 5, pp. 2-8, May 1977.usage-statistics of HLL control-flow constructs. Using this 171 M. R. Garey and D. S. Johnson, Computers and Intractibility-A
method, CSM is shown to reduce the number of signs- Guide to the Theory of NP-Completeness. San Francisco, CA: Free-

man. 1979.tures by as much as 3 times. This paper is the first to [81 M. Halbert and S. Bose, "Design approach for a VLSI self-checking
recognize that a signature's cost, which is a function of MIL-STD-1750A microprocessor." in Proc. 14th IEEEFTCS. 1984.
memory overhead and performance loss, varies among pp. 254-259.
program locations. A ost-reduction algorithm is pr- 191 M. Hsiao, "A class of optimal minimum odd-weight-column SEC-DED codes," IBMJ. Res. Develop., vol. 14, pp. 395-401. July 1970.sented that can significantly reduce total signature cost by 1101 K. Iwasaki, "Analysis and proposal of signature circuits for LSI test-
partitioning a program graph into a low-cost maximal-path ing," IEEE Trans. Computer-Aided Design, vol. 7. pp. 84-90, Jan.

1988.set. For architectures that require NOPS in unfilled delay 111 J. Joseph and A. Avizienis, "A fault tolerance approach to computerslots, or require Noes to resolve pipeline interlocks, total viruses," in Proc. IEEE Symp. on Security and Privacy, 1988, pp.
signature cost can potentially approach zero. 52-58.

Error-detection latency is dramatically reduced by using 112] M. Kobayashi; "Dynamic profile of instruction sequences for the IBMsystem/370," IEEE Trans. Comput., vol. C-32, pp. 859-861, Sept.horizontal and vertical signatures. Techniques are pre- 1983.
sented that combine a horizontal-signature code with the [13) S. Lin, An Introduction to Error-Correcting Codes. EnglewoodCliffs, NJ: Prentice-Hall, 1970.program memory's SEC/DED or parity code. The result- (141 D. Lu, "Watchdog processors and structural integrity checking."
ing product codes [21] correct/detect memory errors, de- IEEE Trans. Comput., vol. C-31, pp. 681-685. July 1982.
Sect signature errors within a short latency, and do not 115] A. Mahmood and E. McCluskey, "Concurrent fault detection using

a watchdog processor and assertions," in Proc. 13th IEEE ITC, 1983,increase horizontal memory overhead. Error-detection la- pp. 622-628.tency is shown to be reduced by orders of magnitude. For 116) A. Mahmood and E. McCluskey, "Watchdog processors: error coy-
processors that use pipelines, the short latency allows re- erage and overhead," in Proc. 15th IEEE FTCS. 1985, pp. 214-219.

1from transient faults without the added complexity [1 A. Mahmood and E. McCluskey, "Concurrent error detection usingcovery twatchdog processons-A survey," IEEE Trans. Comput.. vol. 37. pp.
of rollback/recovery buffers. Complexity is also low be- 160-174, Feb. 1988.
cause the SEC/DED or parity decoder can detect transient 1181 M. Namjoo. "Techniques for testing of VLSI processor operation,"

in Proc. 12th IEEE ITC, 1982, pp. 461-468.monitor errors, eliminating the need to duplicate the mon- 119] M. Namjoo, "Cefbeus-16: An architecture for a general purposeitor. Because CSM can detect a stuck-at PC and false watchdog processor." in Proc. 13th IEEE FTCS, 1983, pp. 216-219.
loops, the complexity of a watchdog timer and the cost of 1201 K. Oikonomou and R. Kain, "Abstractions for node level passive

fault detection in distributed systems," IEEE Trans. Comput., vol.its timer-reet instructions ame eliminated. C-32, pp. 543-550, June 1983.Future research will focus on two areas. First, the CSM 121] W. Peterson and E. Weldon. Jr., Error-Correcting Codes. Cam-
monitor can also be used for at-speed nonconcurrent BIST bridge, MA: MIT Press. 1972.
in the factory or in the field to detect intermittent or per- (22) M. Schmid, R. Trapp, A. Davidoff, and G. Masson. "Upset exposureby means of abstraction verification," in Proc. 12th IEEE FTCS,
manent faults. Methods will be explored for generating 1982, pp. 237-244.
signatured test programs (i.e., test vectors) so that the 1231 M. Schuette and J. Shen, "Processor control flow monitoring using

signatured instruction streams," IEEE Trans. Comput.. vol. C-36,CSM monitor can be used to provide this capability with pp. 264-276, March 1987.
high coverage. Used in this manner, the CSM monitor [241 J. Shen and M. Schuette. "On-line self-monitoring using signatured
may possibly replace some of the BIST hardware cur- instruction streams," in Proc. 13th IEEE ITC. 1983, pp. 275-282.

1251 J. Shen and S. Tomas, "A roving monitoring processor for detectionrently added to processors. Second, CSM is effective at of control flow errors in multiple processor systems." Microprocess.

detecting errors in deterministic control sequences, but ing and Microprogramming, vol. 20, pp. 249-269. May 1987.

WILKEN AND SHEN: CONTINUOUS SIGNATURE MONITORING 641

[261 D. Siewiorek and R. Swarn, The Theory and Practice of Reliable Sys- Chair for the 17th Fault-Tolerant Computing Symposium. His research. in-
tern Design. Digital Press, 1982. terests include computer architecture, fault-tolerant computing, mass stor-

1271 J. Somnowski, -Evaluation of transient hazards in microprocessor age systems, and computer security.
controllers," in Proc. 16th IEEE FTCS, 1986. pp. 364-369.

128] J. Sosnowski. "Detection of control flow errors using signature and
checking instructions." in Proc. 1&h IEEE ITC, 1988, pp. 81-88.

1291 T. Sridhar and S. Thane. "Concurrent checking of program flow in
VLSI pocessrs," in Proc. 12th IEEE ITC, 1982, pp. 191-199.

130] H. Stone, High-Performance Computer Architecture. Reading, MA:
Addison-Wesley. 1987.

1311 C. Tung and J. Robinson, "On concurrently testable micropro-
grarnmed control units," in Proc. 16th IEEE f7C. 1986, pp. 895-
900.

[321 D. Turner, R. Burns, and H. Hecht, "'Designing micro-based systems
for fail-safe travel." IEEE Spectrum. vol. 24. pp. 58-63, Feb. 1987.

1331 K. Wilken and J. Shen., "Embedded signature monitoring: analysis
and technique." in Proc. 17th IEEE ITC, 1987, pp. 324-333. John Paul Shen (M'84) received the B.S. degree

1341 -, "Continuous signature monitoring: efficient concurrent-detec- from the University of Michigan, Ann Arbor. Mi.
tion of processor control errors." in Proc. l&h IEEE ITC, 1988, pp. in 1973, and the M.S. and Ph.D. degrees from the
914-925. University of Southern California. Los Angeles,135] K. Wilken and J. Shen. "Concurrent error detection using signature CA, in 1975 and 1981, respectively, all in elec-

monitoring and encryption," in Proc. /mt. Ist Working Conference on tical engineering.
Dependable Computers in Critical Applications. New York: Spin- From 1973 to 1975, he was with the Hughes
ger-Verlag. to be published. Aircraft Company, designing fault detection/iso-

136] T. Williams. W. Daehn. M. Ormetzner, and C. Starke, "'Bounds and lation and built-in-test circuits for avionic sys-
analysis of aliasing errors in linear feedback shift registers," IEEE ' tems. In 1977. he was with TRW Inc. and was
Trans. Compuer-Aided Design. vol. 7. pp. 75-83. Jan. 1988. involved in the preliminary design of a local area

computer network. From 1977 to 1981, he performed research on multi-
computer interconnection networks in the Department of Electrical Engi-
neering, University of Southern California. In 1981 he joined the Depart-

Kent Wilken (M'84) received the B.S. and M.S. ment of Electrical and Computer Engineering of Carnegie Mellon
degrees in electrical engineering (with distinction) University. Pittsburgh, PA. where he is currently a Professor and Director
from Stanford University. Stanford, CA. in 1977. of the Research Center for Dependable Systems. He has consulted for the
Since 1986 he has been a Ph.D. candidate in the IBM Federal Systems Division, General Electric, and the Aerospace Cor-
Department of Electrical and Computer Engineer- poration. During the '88-'89 academic year, he was on sabbatical leave at
ing. Carnegie Mellon University, Pittsburgh. PA. Stanford University and ESL-TRW. His research interests include concur-

From 1977 to 1985 he was with the Hewlett rent error monitoring in fault tolerant systems and high-perfornance ap-
Packasd Company where he was involved in disk plication-specific processor design.
controller architecture, mass storage perfor- Dr. Shen is amember of IEEE. ACM. Tau Beta Pi. Eta Kappa Nu.
mance. 1/O architecture, and fault-tolerant corn- Sigma Xi. and a recipient of the NSF Presidential Young Investigator
puting. In 1987 he served as Local Arrangements Award.

Detecting Processor Hardware Errors and Computer Viruses
Using Program Encryption and Signature Monitoring

Kent Wilken and John Paul Shen

Center for Dependable Systems
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

Telephone: [Wilken] (412) 268-6639
INTERNET: wilken@ece.cmu.edu

Abstract -- This paper presents a low cost approach to concurrent detection of program execution

errors that combines program encryption with signature monitoring. Sources of detectable errors in-

clude permanent and transient hardware faults, and computer viruses. Errors are detected using a

hardware monitor and signatures the compiler embeds into the program. Using intermediate sig-

natures, a program is encrypted by the signature compiler and decrypted during execution in real time

by the monitor. The new approach is more efficient than existing signature-monitoring techniques be-

cause it significantly reduces error-detection latency and the number of embedded signatures. Com-

puter virus attacks are made difficult because a virus must deduce a program's key and the monitor's

cryptographic signature function to attach compatibly encrypted code. Including the processor's inter-

nal control signals in the signature increases coverage of errors caused by hardware faults, and also

significantly increases virus resistance because a successful attack must deduce details of the

processor's implementation.

Key Words:

Fault Tolerance and Security

Concurrent Error Detection

Computer-Virus Detection

Program Encryption

Signature Monitoring

Signature Analysis

Control-Flow Checking

Cache Memory

2

1. Introduction

Complete computer dependability requires detection of errors from all sources. Since the earliest com-

puters, much attention has been focused on detecting errors caused by hardware faults. As system com-

plexity increased, detection of errors caused by software and hardware design faults became important.

Although faults are often assumed to be inadvertent, deliberate faults (e.g. computer viruses) cause er-

rors that must be detected. The potential for deliberate faults is becoming greater as computer use and

computer communication increases.

This paper proposes a low cost behavior-based approach to detecting errors caused by certain hardware,

design, and deliberate faults. In the behavior-based approach, a program's behavior is abstracted and the

abstraction is monitored for run-time violations. No fault model is assumed, any fault (hardware,

design, or deliberate) that causes incorrect program behavior is potentially detectable. To be efficient,

the selected abstraction must provide high error-detection coverage at a low cost. Experiments using

various program abstractions find that the program-control-flow abstraction offers the most error detec-

tion potential [7.14]. Researchers [9, 11, 12, 13, 15, 16, 18, 21] have proposed techniques that monitor

program control flow using signatured programs and a hardware monitor, a general approach we call

signature monitoring. This paper proposes a new approach to signature monitoring that significantly

increases its efficiency and effectiveness.

1.1 Signature Monitoring

To provide efficient error detection, signature monitoring exploits a common program redundancy: few

instructions alter control flow. This redundancy allows program segments containing many instructions

to be coded and later checked, as a unit. Figure 1 shows the basic signature-monitoring technique. The

signature compiler divides the code into basic blocks [1], computes each block's reference signature,

and then embeds a signature instruction at the block's end. The signature instruction has a field that

contains an identifying opcode, and a field that contains the reference signature. The opcode could be a

coprocessor opcode already included in the processor's instruction set, or it could be a specific addition

to the instruction set.

During execution, the monitor observes the executed instructions and generates each block's run-time

signature using dedicated hardware. At each signature instruction, the processor executes a NOP while

the monitor compares the run-time and reference signatures, declaring an error if they differ. The sig-

3

nature function V is typically a cyclic-redundancy check (CRC) polynomial so that the run-time sig-

nature can be generated using a parallel-input linear feedback shift-register (PLFSR). Detectable errors

include control-flow errors and control-bit errors. A control-flow error occurs when the instruction

execution sequence is incorrect. Control-bit errors result when instructions are executed in the correct

order but one or more of the signatured control bits is incorrect. The signature can include control bits

from assembly code, microcode, and hardware control lines.

Recently researchers have proposed approaches that reduce the latency for detecting signature errors. A

short error detection latency is important because it can allow low cost recovery from errors caused by

transient hardware faults [21]. Wilken and Shen [21] propose checking one or more horizontal

signature [21] bits at each program word, thereby providing order of magnitude reduction in error detec-

tion latency. Memory overhead does not increase because the horizontal signatures can be combined

with the program memory's parity or single-error-correcting/double-error-detecting (SEC/DED) code

[21]. However, horizontal signatures cause the instruction width to increase, which causes incom-

patibility with existing system architectures throughout the memory hierarchy [13]. Saxena and

McCluskey [13] propose reducing error detection latency by using extended precision checksums as sig-

natures and by exploiting the naturally occurring opcode redundancy. The extended-precision-

checksum approach has the advantage that it does not increase instruction width, however latency reduc-

tion is small compared with that provided by horizontal signatures, and significant reduction is limited to

faults causing opcode-field errors in multiple instructions. In Section 2 a new approach is proposed that

uses program encryption to provide latency reduction comparable to that provided by horizontal sig-

natures, without increasing instruction width.

Signature monitoring techniques have been proposed that reduce the number of embedded signatures by

allowing a path containing more than one basic block to be encoded into each signature [11, 15, 21].

The technique proposed by Wilken and Shen [211 Continuous Signature Monitoring (CSM), was shown

to reduce the number of signatures to a theoretical lower bound by partitioning the program into the

minimum number of paths. This result is based on the assumptions that the monitor contains no

memory other than a register for accumulating the run-time signature, and that control-flow error detec-
tion coverage is 1-2-v for a v-bit signature [21]. In Section 3 these assumptions are relaxed and a tech-

nique is proposed that uses program encryption and a small signature cache in the monitor to reduce the

number of embedded signatures compared with CSM without substantially reducing coverage. This

technique significantly reduces performance overhead because the signature that was previously re-

4

quired inside each loop can be eliminated. In Section 4 the CSM coverage assumption is also relaxed

and a technique is proposed that further reduces the number of embedded signatures without substantial

coverage reduction by using program encryption to eliminate the signatures previously required for sub-

routine calls.

The MIPS RISC [10] is used in this paper as an example architecture for illustrating the effectiveness of

the proposed techniques. However, these new techniques are general and are applicable to other ar-

chitectures.

1.2 Computer Virus Detection

Recently, the computing community has experienced numerous computer virus attacks [5]. Cohen

[3] showed that computer viruses can be created with modest skill and effort, can spread rapidly, and

pose a significant security threat. As computers proliferate, the number and severity of computer virus

attacks is likely to increase. Effective and efficient virus-detection techniques are needed.

Various techniques have been proposed that use cryptographic checksums to ensure program integrity

when a program is loaded, e.g. [4]. Although effective, these techniques do not ensure the integrity of

an executing process. For example, these techniques cannot detect (and preclude) process alterations

such as that caused by the Internet Worm's "fingerd" attack [17].

Joseph and Avizienis [9] propose extending signature monitoring to include concurrent virus detection.

Signature monitoring can concurrently detect a virus, unless the virus is properly signatured. Proper

signaturing of a virus may be easy for earlier techniques because they use a single signature function

that the attacker might know or easily deduce [9]. Joseph and Avizienis propose using multiple sig-

nature functions, one of which is randomly selected for each program by the signature compiler. Using

a technique proposed by Namjoo [12], the signature compiler links the program's signatures to form a

graph that the monitor traverses and checks during program execution. Joseph and Avizienis propose

that the graph and a vector that represents the signature function are encrypted by the signature com-

piler, and are decrypted by the monitor when the program is loaded. The plaintext [2] is stored in the

monitor's local memory, which is not readable externally. Attacks are averted because a virus cannot

easily attach segments to the program that conform to the ei ,crypted i&,artuie graph, or easily alter the

program and the encrypted signature graph in a consistent way, without detection.

5

Although innovative, the encrypted signature-graph approach has significant limitations. The decryp-

tion overhead precludes this approach if process context switches are frequent [9]. For systems that use

virtual memory, the monitor's memory is large because it must contain the entire signature graph, even

though only a fraction of the program may reside in the processor's real memory. Moreover, the sig-

nature graph is large because it contains the signatures plus the links that form the graph's arcs. For

processors that use an on-chip cache, the monitor must be located on-chip to observe the program's

behavior [20]. However the memory required by the monitor is generally much too large to reside on

chip. For the encrypted signature graph approach, an on-chip monitor requires separate address and data

buses for accessing the signature graph, which is a significant cost.

In Section 5, a new approach to concurrent virus detection is proposed that uses signatures embedded in

an encrypted program. This approach provides significant resistance to virus attacks, and avoids the

limitations of the encrypted signature-graph approach. Section 6 summarizes the paper's contributions

and discusses future work.

2. Basic Program Encryption

This section introduces the basic approach to combining program encryption with signature monitoring.

The basic approach is shown to provide reductions in error detection latency comparable to that

provided by horizontal signatures, without causing significant incompatibility with existing system ar-

chitectures.

2.1 Instruction Hashing

Figure 2a shows a path that is signatured using the conventional approach. A path's signature is the

result of a series of intermediate calculations performed at each word in the path:

$k = V (Wk_1 , Sk-1)(I

where k ranges from 1 to j, V is the signature function, Wk.l is the word at location k-i, and S0 is a

specified initial value (21]. Location k is associated with intermediate signature [21] Sk, which for b.0

is the signature of the sub-path [0, k-1]. The last intermediate signature, Sj, is the path's signature.

The conventional signature monitoring approach only alters the assembly code by embedding sig-

natures. The proposed approach, illustrated in Figure 2b, embeds signatures as before, but also encrypts

6

each program word using its location's intermediate signature as the key. Figure 2b shows a path

encrypted by the signature compiler using an efficient encryption function, the exclusive-or (XOR)

operator. During execution, the monitor generates each run-time intermediate signature, decrypts the

word in real time, and delivers the result to the processor for execution.

Schuette and Shen [15] proposed a technique called branch address hashing (BAH) that can eliminate

reference signatures that follow branch instructions. The address word of each two-word branch instruc-

tion is replaced by the address word hashed (XORed) with its intermediate signature. Following a sig-

nature error, the unhashed branch address becomes a pseudo-random value, and a jump is taken to an

arbitrary location, where the error may be detected. The basic encryption approach proposed here can

be viewed as a generalization of BAH in which all instruction words are hashed, not just branch ad-

dr.,sses. Thus, the new approach is termed instruction hashing. The remainder of this paper describes

how instruction hashing is used to significantly improve signature monitoring's efficiency and effec-

tiveness.

2.2 Short Error-Detection Latency

Computer systems generally contain hardware and software mechanisms for detecting such errors as

illegal opcodes, address or capability violations, alignment errors, illegal system calls, etc. For signature

monitoring, an error that produces an incorrect signature causes the following run-time intermediate

signatures to be pseudo-random. With instruction hashing, the instructions unhashed using these inter-

mediate signatures are also pseudo-random. Executing pseudo-random instructions will trigger the

system's built-in error detection mechanisms, resulting in reduced error-detection latency. Additionally,

these mechanisms can detect monitor errors because a monitor error will cause the runtime intermediate

signatures to be incorrect, causing pseudo-random instructions to be produced.

To illustrate the magnitude of the short error-detection that latency instruction hashing provides, experi-

ments were performed using a MIPS RISC processor. The object code of a small user program (3K

words) was repeatedly altered by replacing a valid sequence of instructions with a pseudo-random se-

quence. Each of 100,000 program alterations was executed. All executed random instructions were

recorded and categorized by primary instruction opcode, as well as all instructions that produced

detected errors. The results of these experiments are summarized in Figure 3, which shows a bar for

each primary opcode indicating the probability that an error is detected when a random instruction with

7

that opcode is executed. The average detection probability for all opcodes is 0.81, which corresponds to

an error detection latency of (1 - 0.81)/0.81 = 0.23 cycles. For the MIPS RISC architecture, instruction

hashing's detection latency is less than the 1.0 cycle detection latency for a 1-bit horizontal signature

[21], and is comparable to the 0.25 cycle detection latency that would be provided by a 2-bit horizontal

signature. A principal advantage of using instruction hashing to reduce error detection latency

vs. horizontal signatures is that the instruction width is unchanged and thus greater compatibility is

maintained with existing system architectures.

Examination of the types of detected errors in the above experiments shows that the primary detection

mechanisms are the illegal opcode, address bounds violation, coprocessor unusable, and data alignment

error detectors. Of the 64 primary MIPS RISC opcodes, 24 are illegal (reserved) and always generate an

illegal opcode error, accounting for 46% of all detected errors. Nine opcodes a liays generate a

coprocessor unusable error because the corresponding coprocessor is not implemented (coprocessor 2,

coprocessor 3) ox is not accessible in user mode (coprocessor 0), accounting for 17% of all detected

errors. Address bounds violations to locations in the kernel were 13% of all detected errors, and bounds

violations to unused locations in the user space represented 12% of all detected errors. Alignment errors

were 9% of the total. The remaining 3% were due mainly to illegal (reserved) secondary opcodes and

arithmetic exceptions, both floating point and integer.

Detection probability decreases for larger user programs because there are fewer address bounds viola-

tions to unused locations in the user space. However the decrease is small even for the largest programs

because such errors only account for 12% of the total. Detection probability is less for kernel programs

because legal access can be made to used locations in both the kernel and user spaces, in ar, extreme

case reducing the fraction of detected errors by 25%. Also fewer errors are detected in kernel mode

because coprocessor 0 is accessible, although at least 2/3 of all random coprocessor-0 instructions are

detected because of alignment errors or illegal secondary opcodes. The experiments overstate the

average error detection probability by roughly 0.01 because the monitor would be implemented as

coprocessor 2 or 3, and a small fraction of the corresponding instructions would no longer generate

errors when executed randomly.

Instruction hashing's short detection latency is not unique to the MIPS RISC processor. Short detection

latencies were also observed for random instruction execution on a VAX [6] processor.

8

2.3 Instruction Hashing's Cost

Sections 3, 4, and 5 detail other significant benefits allowed by instruction hashing, including major

reductions in the memory and performance overhead caused by embedded signatures, and significant

resistance to computer virus attacks. In this subsection instruction hashing's costs are presented.

Instruction hashing's primary cost is the small delay added to each instruction fetch by the XOR gate

that is needed for unhashing instructions, as illustrated in Figure 4. The magnitude of this delay can be

determined from the ratio of the processor's cycle time to the nominal gate-delay time. For example, the

16.7 MHz MIPS R2000 processor uses a 2 micron CMOS process [8], which has a nominal 1.2

nanosecond gate delay. Thus the R2000's cycle time equals 50 gate-delay times. This suggests that an

XOR gate, which has two primitive gate delays, has a delay time that is 4% of the cycle time. Assuming

the instruction fetch is a critical path, the instruction-cache RAM must be faster by two gate-delay times

(e.g. by 2.4 nanoseconds for the R2000) to avoid reducing processor performance. This faster-RAM

requirement will generally increase a computer's cost. A secondary cost for using instruction hashing is

the slight increase in the monitor's size caused by the unhashing circuit.

Instruction hashing also causes a decrease in error detection coverage. Following a signature error,

instruction hashing can induce a control-flow error by creating an instruction that alters control flow, or

by creating an instruction that does not alter control flow where an unconditional control-flow-altering

instruction normally exists. An upper bound on this coverage decrease can be determined. Let d be the

probability that an error is detected in each cycle, and f be the fraction of undetected errors that are

induced control-flow errors. The probability that an induced control-flow error cancels the original sig-

nature error is 2". Thus, the expected reduction in coverage is:

[(1-d)f2v] / [d + [(l-d)f2 "v] I

For the above experiments d is 0.81. The fraction f is at most 1. For the MIPS RISC architecture, the

25-bit cofunction field of the coprocessor instruction COPz [10] can be used as the signature field. For

these data, the reduction in coverage caused by instruction hashing is at most 0.23 x 2
v , or 7 x 10-9 ,

which is negligible.

9

3. Signature Caching

In [21], the CSM signaturing technique is shown to use the theoretical minimum number of signatures,

assuming that the monitor contains no memory except the run-time signature accumulator, and that

control-flow error coverage is 1-2" for a v-bit signature [21]. Here these assumptions are relaxed and a

new technique is proposed that uses instruction hashing and a small signature cache to reduce the num-

ber of signatures below that required by CSM, without substantially reducing control-flow error

coverage.

3.1 Previous Signature-Reduction Technigaes

This subsection reviews previous signature-reduction techniques as background for the signature-

caching technique proposed in the next subsection. Namjoo [11] proposed Path Signature Analysis

(PSA), a technique that uses justifying signatures to reduce the number of embedded signatures. A

justifying signature is a word embedded in a path that sets (justifies) the path's signature to a particular

value. In Figure 5, a simple program is represented by a program graph, a directed graph that represents

each basic block by a node and each possible transition between basic blocks by an arc. PSA constructs

sets of paths that cover all legal sequences of nodes in the graph. All paths in a set start at the same

node, and share a common reference signature that is embedded at the beginning of the starting node.

PSA adds justifying signatures to selected nodes so that all paths in a set produce the same signature.

The path sets for Figure 5 are I ABD, ABC) and (BD, BC). Reference signatures are embedded at the

beginning of nodes A and B, and a justifying signature is embedded in node C or D so that these nodes

(and hence the paths in the two path sets) produce the same signature. Compared with the basic tech-

nique, PSA reduces the number of signatures for this program from 4 to 3, and reduces the number of

signatures for substantial programs by approximately 40% [21].

The CSM technique [21] further reduces the number of signatures by using justifying signatures to

create a program that produces the same signature for any path from entry to exit. CSM could be

viewed as a generalization of PSA that uses a single path set and a fixed-value reference signature

(e.g. 0) to cover an entire program. CSM partitions a program graph into disjoint maximal paths [21].

One maximal path begins at the program's entry node, and a maximal path begins at one of the outgoing

arcs of each conditional-branch node. A justifying signature is embedded into a maximal path that ends

by merging with another maximal path or itself, such that the path's signature equals the merge

location's intermediate signature. A justifying signature is embedded into a maximal path that ends at a

10

program exit such that the path's signature equals the fixed-value reference signature, e.g. 0. Horizontal

signatures were proposed as the means for detecting errors. Thus, CSM requires only two justifying

signatures for the program graph in Figure 5: one embedded in node B or node D of maximal path ABD,

and the other embedded in node C of maximal path C. Compared with PSA, CSM reduces the number of

signatures for this program from 3 to 2, and reduces the number of signatures for substantial programs

by approximately 30% [21].

3.2 Signature Caching Technique

A new technique is proposed that uses instruction hashing and a small signature cache in the monitor to

reduce the number of signatures below that required by CSM. Within each program loop, CSM must

embed a justifying signature to ensure that the intermediate signature is correct when the program

returns to the loop's first location. However, the monitor previously calculated (and then discarded) this

intermediate signature. For the proposed technique, illustrated in Figure 6, the signature compiler

removes the loop's justifying signature. During execution, the monitor stores each newly-calculated

intermediate signature and the corresponding address in a small cache. For simplicity, a direct-mapped

cache [19] can be used. When a branch with a negative displacement is taken, the monitor compares the

target instruction's address with the addresses in its cache, and copies the corresponding intermediate

signature into its signature register if a match occurs. Given the size of the cache, the signature compiler

can remove the justifying signature from each loop that is smaller than or equal to the size of the cache.

For the program in Figure 5, if the size of node B plus the size of node D is less than or equal to the

cache size, the justifying signature from maximal path ABD can be eliminated, leaving only the justify-

ing signature in maximal path C. Thus, compared with CSM, the new technique can reduce the number

of signatures for this program from 2 to 1.

To determine the reduction that signature caching allows for substantial programs, data were gathered

for five C programs compiled for the MIPS RISC architecture: awk, cc, csh, emacs, and latex. The

gathered data includes the (static) fraction of specific instructions and specific instruction types. The

combined data for these programs are shown in Table 1. The fraction of signatures that CSM requires

for these programs can be determined using these data. CSM requires a justifying signature for each

conditional branch, and a justifying signature for all but one of the calls to a subroutine [21]. Assuming

that each subroutine has one return, the average fraction of CSM signatures is: ConditionalBranches +

Calls - Returns = 13.96%. Relative to CSM, signature caching allows one justifying signature to be

II

eliminated per Loop End. For these programs, signature caching can reduce the fraction of signatures by

as much as 1.69%, to 12.27%, an improvement of 12% compared with CSM. Moreover, the reduction

in performance overhead is much larger because signatures within loops, especially small inner loops,

cause a disproportionate fraction of the total performance overhead.

The actual fraction of loop signatures that are eliminated depends on both cache size and the distribution

of loop sizes. Figure 7 shows the average percentage of loop signatures that can be removed from these

five programs for cache sizes that are a power of 2. For these data, a cache of size 256 will eliminate the

justifying signatures from 95% of all loops, while a cache of size 32 will eliminate 60%.

Besides reducing the number of signatures and performance overhead, signature caching also allows a

significant reduction in error detection latency. If the initial iteration of a loop is error free, and the

loop's size is less than or equal to the size of the cache, the cache contains the correct intermediate

signature for each of the loop's locations. On the second and each subsequent loop iteration, a cache hit

will occur at each loop location and the monitor can compare the current, calculated intermediate sig-

nature with the corresponding intermediate signature in the cache. An error is declared if these inter-

mediate signatures differ. Because a large fraction of a program's execution time is spent within loops,

a large fraction of transient control errors are detected in this manner, with zero latency.

3.4 Error Detection Coverage

Instruction hashing must accompany signature caching to avoid a large reduction in error detection

coverage. Without instruction hashing, any error that occurs within a loop where the justifying signature

has been removed, is undetectable if the error is not detected when the loop's end is reached. Such

errors are undetectable because the incorrect run-time signature would be overwritten with the correct

intermediate signature of the loop's first location, which is copied from the cache. Instruction hashing

prevents this occurrence because, following an error, the branch that ends the loop is transformed into a

pseudo-random instruction, and the loop is broken.

However, the combination of instruction hashing and signature caching does cause some reduction in

error detection coverage. Following an error, if a pseudo-random instruction is a branch to a location

contained in the cache, a correct intermediate signature is copied from the cache and the error becomes

undetectable. The expected reduction in coverage caused by the signature cache is related to the instruc-

12

tion set architecture and to the cache size. This reduction can be conservatively estimated for the MIPS

RISC architecture. An error is assumed to be either a control error, or a control-flow error with a dis-

placement that is within the 16-offset used by the MIPS RISC branch instructions. For a cache of size c,

if a pseudo-random instruction is a taken branch, the error escapes detection with probability c 2-16. Of

the 64 total primary opcodes, the MIPS RISC has 4 primary branch opcodes, and secondary branch

opcodes that are equivalent to 1/2 of a primary opcode. Assuming the branch condition is satisfied with

probability 1/2, the probability that a pseudo-random instruction is a taken branch is (4.5/64)/2 = 2-5 .

Thus the estimated error escape probability is = c 2-21. For the cache sizes suggested by the data in the

preceding subsection, i.e. < 28, the coverage reduction caused by signature caching is negligible.

3.5 Monitor Size and Context Switching

The signature cache increases the monitor's size. Each cache entry includes an address tag and a sig-

nature field. For a 32-bit processor, the size of the address tag for the direct mapped cache is

[32-1og2cl. For the MIPS RISC architecture, the preceding analysis shows that a signature that is much

larger than [21 - log2cl bits will not substantially increase coverage. Based on the data presented in

Section 3.3, a 16-bit signature would be an appropriate size. Thus for the MIPS RISC example, each

cache entry increases the monitor's size by adding r48-og2 cl bits of memory. [Note that unlike a

processor cache, a signature cache entry does not require a valid bit because when a program is loaded

the cache can be initialized with c valid entries, e.g. the addresses and intermediate signatures of the

program's first c locations. Following initialization, cache entries are always valid.]

Signature caching also increases the monitor's size because, unlike existing signature monitoring tech-

niques, the monitor must have access to instruction addresses, and because of the comparison circuitry

needed to determine cache hits.

Within loops where the justifying signature has been removed, the cache's contents become part of the

process state that must be saved, and later restored, when a context switch occurs. Thus, signature

caching increases the time for context switches. Howe. .r, there is no increase for context switches that

are known (scheduled) not to occur inside loops where the justifying signature has been removed, be-

cause for these context switches the signature register's contents are the only process state in the monitor

that must be saved.

13

4. Subroutine-Signature Reduction

A new technique is proposed that uses instruction hashing to eliminate the signatures that previous tech-

niques require for subroutine calls. Compared with CSM, the combination of this technique plus sig-

nature caching is shown to reduce the number of signatures by 50%, without substantially reducing error

detection coverage.

4.1 A New Subroutine-Signaturing Technique

A new technique is proposed that does not require justifying signatures for subroutine calls. For a RISC

processor, the CSM signaturing technique places a justifying signature in the delay slot following all but

one call to a subroutine [21], e.g. after a Jump and Link (JAL) instruction [10]. The new technique

eliminates these justifying signatures as illustrated in Figure 8. The subroutine's first instruction sub, is

placed in the delay slot following each call to that subroutine. The delay slot's intermediate signature is

set to the value of the JAL's address field, which is the address of the subroutine's second instruction,

sub2 . Using the CSM signaturing technique, justifying signatures are embedded in the subroutine so that

any route through the subroutine produces the same signature Sc [21]. The return location's inter-

mediate signature is set to SC. Each instruction is hashed with its intermediate signature, which for

clarity is not illustrated.

The Jump and Link Register (JALR) instruction is also used for subroutine calls by the MIPS RISC

architecture [10]. JALR fetches a subroutine's initial address from a designated register. Assuming that

register contents are not visible to the monitor, a separate signaturing method is necessary to accom-

modate JALR. This is done by modifying the preceding technique for JALR so that the intermediate

signature of the JALR delay slot is set to a fixed value, e.g. 0. Thus, a subroutine is called using either

JAL or JALR, but not both.

Instruction hashing must be used with this technique to avoid a significant reduction in error detection

coverage. Without instruction hashing, any error that is not detected when a subroutine call is reached is

undetectable because the incorrect signature would be overwritten with a valid intermediate signature,

i.e. the JAL address field or 0 for a JALR. Instruction hashing effectively propagates signature errors

until they are detected because with a high probability either the decrypted pseudo-random instruction

does not cause the incorrect signature to be overwritten, or it is overwritten with another incorrect value.

14

Unlike the CSM technique, for the new technique a return location's intermediate signature does not

depend on the intermediate signature of the delay slot following the call instruction, and thus a signature

link register in the monitor and a signature stack in main memory are not necessary. This can sig-

nificantly decrease the complexity of the monitor, and reduce performance overhead for nested sub-

routine calls.

4.2 Signature Reduction

The new technique significantly reduces the number of embedded signatures. As noted in Section 3.3,

the fraction of CSM signatures is: ConditionalBranches + Calls - Returns, which averages 13.96% for

the five example programs. Relative to CSM, the new subroutine signaturing technique reduces this

fraction by (Calls - Returns), which is 5.21% for these programs. This signature reduction corresponds

to a significant reduction in performance overhead because useful instructions can be executed in the

delay slot following calls, instead of signature instructions. However, memory overhead is not reduced

relative to CSM because the number of duplicate subroutine instructions that are added equals the num-

ber of justifying signatures that are eliminated.

Including the 1.69% reduction that is allowed by signature caching, the two instruction-hashing based

techniques allow the fraction of signatures to be reduced to 7.06% for the five example programs. The

MIPS RISC architecture requires that a NOP be placed in a branch or a load delay-slot that the compiler

cannot fill with a useful instruction [10]. From Table 1, the fraction of NOPs for these programs is

12.97%, which is 84% greater than the fraction of signatures required using these new techniques. An

algorithm is proposed in [21] tf-at partitions a program graph into maximal paths such that a maximum

number of paths contain a NOP. If a path contains a NOP, the justifying signature can replace the NOP

and no performance or memory overhead is incurred [21]. For MIPS RISC architecture, the proposed

techniques potentially eliminate the overhead for justifying signatures because there are significantly

more NOPs than justifying signatures, and because the graph can be partitioned so that a maximal path

that requires a justifying signature also generally contains a NOP. Thus performance overhead is poten-

tially eliminated, and memory overhead is potentially reduced to the fraction of duplicate subroutine

instructions, i.e. (Calls - Returns), which is 5.21% for the five example programs. However, note that

for the unsignatured program the compiler may duplicate a subroutine's first instruction to fill the delay

slot following a call. Thus the memory overhead (i.e. duplicate subroutine instructions) due to this new

signature-monitoring approach is generally less than (Calls - Returns).

15

4.3 Coverage Analysis

Control-flow error coverage is reduce below 1-2-l' if intermediate signatures are correlated [21]. The

new subroutine signaturing technique causes little reduction in control flow error coverage because few

intermediate signatures are correlated. Three potential sources of correlated signatures are: the delay

slots following JALs, the delay slots following JALRs, and return locations. The delay slots following

JAL calls to the same subroutine have the same intermediate signatures and hence cause intermediate

signature correlation. However this correlation does not reduce control-flow error coverage because a

fault that causes one of these instructions to be executed instead of another does not cause a program

error, because the instructions are the same. These instructions and their intermediate signatures are

redundant with respect to control-flow faults. The delay slots following JAL calls to different sub-

routines necessarily have different intermediate signatures and thus are not correlated.

The intermediate signatures in the delay slots following all JALRs are correlated. A control flow error

that causes an instruction from an incorrect JALR delay slot to be fetched is not immediately detectable.

However the error is detectable at the next instruction when the control flow effect of the JALR occurs.

If the instruction in the incorrect delay slot differs from that in the correct delay slot, the mn-time sig-

nature at the subroutine's second instruction will be incorrect and the error is detectable. If the instruc-

tion in the incorrect delay slot is the same as in the correct delay slot, the instructions are redundant with

respect to the control-flow fault, and a program error does not occur.

If the instructions in the JALR delay slots are correlated, the intermediate signatures of the subroutines'

following instructions are correlated, which causes reduced control-flow error detection coverage.

Using the data in Table 1, this reduction is conservatively estimated by assuming that all JALR delay-

slot instructions are identical, that the second instruction of each JALR-called subroutine is different,

that there are 5 calls to each subroutine, and that control-flow errors stay within a program's bounds.

From Table 1, the probability that a given control-flow error occurs at a JALR delay slot is 0.0009.

From Table I and the above assumptions, the probability that the control flow error lands at a JALR-

called subroutine's second instruction is 0.0002. Thus, the estimated reduction in control-flow error

coverage is 2 x 10- 7, which is negligible.

Because return locations for the same subroutine have the same intermediate signature, a control-flow

error that lands at one of these locations rather than another is not detected. This coverage reduction can

16

be conservatively estimated using the data in Table 1 by assuming there are 5 calls to each subroutine

and that control-flow errors stay within a program's bounds. From Table 1, the probability that a given

control-flow error occurs at a return is 0.0124. From Table 1 and the above assumptions, the probability

that the control flow error lands at an incorrect return location for that subroutine is 0.0620/s, where s is

the number of subroutines in he program. Thus, the estimated reduction in control-flow error coverage

is 0.0007/s. The average value of s for the five example programs is 516, implying an estimated

coverage reduction of 1.5 x 10- 6 , wuich is also negligible.

17

References

[1] Aho, A., R. Sethi, and J. Ulman, Compilers: Principles, Techniques, and Tools, (Addison-
Wesley, 1985).

[2] Beker, H., and F. Piper, Cipher Systems: The Protection of Communications, (John Wiley,
1982).

[3] Cohen, F., Computer Viruses: Theory and Experiments, pp. 240-263, 7th National Computer
Security Conf., , (Sept. 1984).

[4] Cohen, F., A Cryptographic Checksum for Integrity Protection, Computers & Security 6, 6 (Dec.
1987), 505-510.

[5] Denning, P., Computer Viruses, American Scientist 76, (May-June 1988), 236-238.

[6] Digital Equipment Corp., VAX Architecture Handbook, (Digital Press, 1981).

[7] Gunneflo, U., Karlsson, J. & J. Torin, Evaluation of Error Detection Schemes Using Fault Injec-
tion by Heavy-ion Radiation, pp. 340-347, Proc. 19th FTCS, IEEE, (1989).

[8] Johnson, Mark G., A Symmetric CMOS NOR Gate for High-Speed Applications, IEEE Journal
of Solid-State Circuits 23, 5 (October 1988), 1233-1236.

[9] Joseph, M., & A. Avizienis, A Fault Tolerance Approach to Computer Viruses, pp. 52-58, Proc.
Symp. on Security and Privacy, IEEE, (1988).

[10] Kane, G., MIPS RISC Architecture, (Prentice-Hall, 1988).

[11] Namjoo, M., Techniques for Testing of VLSI Processor Operation, pp. 461-468, Proc. 12th 1TC,
IEEE, (1982).

[12] Namjoo, M., Cerberus-16: An Architecture For a General Purpose Watchdog Processor, pp.
216-219, Proc. 13th FTCS, IEEE, (1983).

[13] Saxena, N. & E. McCluskey, Control-Flow Checking Using Watchdog Assists and Extended-
Precision Checksums, pp. 428-435, Proc. 19th FTCS, IEEE, (1989).

[14] Schmid, M., R. Trapp, A. Davidoff & G. Masson, Upset Exposure by Means of Abstraction
Verification, pp. 237-244, Proc. 12th FTCS, IEEE, (1982).

[15] Schuette, M. & J. Shen, Processor Control Flow Monitoring Using Signatured Instruction
Streams, IEEE Transactions on Computers C-36, 3 (March 1987), 264-276.

[16] Shen, J. & S. Tomas, A Roving Monitoring Processor for Detection of Control Flow Errors in
Multiple Processor Systems, Microprocessing and Microprogramming 20,4 & 5 (May 1987),
249-269.

[17] Spafford, E., The Internet Worm: Crisis and Aftermath, Communications of the ACM 32, 6
(June 1989), 678-687.

18

[18] Sridhar, T. & S. Thatte, Concurrent Checking of Program Flow in VLSI Processors, pp.
191-199, Proc 12th 1TC, IEEE, (1982).

[19] Stone, H., High-Performance Computer Architecture, (Addison-Wesley, 1987).

[20] Wilken, K. & J. Shen, Continuous Signature Monitoring: Efficient Concurrent-Detection of
Processor Control Errors, pp. 914-925, Proc. 18th ITC, IEEE, (1988).

[21] Wilken, K. & J. Shen, Continuous Signature Monitoring: Low-Cost Concurrent-Detection of
Processor Control Errors, IEEE Transactions. on CAD (June 1990), to be published.

Op. Ref. Sig. Signature Instruction

Basic _ _ _ _ _ __ _ _ _ __V

BlockSintr
Op. Ref. Sig.1 Op. Ref. Sig. Ignaur

Figure 1: Basic Signature-Monitoring Technique.

SjS

(a)CovetinalAproch (b wntuons hin

Wiur 2:PrgamSgntrig

1.0.

~0.8-

.0 2 0.6
0

.2 0.4

0.2

Primary MIPS RISC Opcode

Figure 3: Detection Probability for Random Instruction Execution.

Processor

Address S.

WinGSio Feth.Dla
V Monitor

l Cache

Figure 4: Instruction Fetch Delay.

A

B

Figure 5: Example Program Graph.

Cache State
After Branch

ADDRwS
ADDR x S

SwADDR Sy

Sx Sw
Sy Sx
SzSw+Szv Sy

Without Caching With Caching

Figure 6: Signature Caching.

100.00/0

800%

0

060.0%-

40.00/6C

CL 20.0%-0
0

2 4 8 16 32 64 128 256 512 1K

Signature-Cache Size

Figure 7: Fraction of Loop Signatures Removed vs. Cache Size

Main
JA L Addrx

sub, Addrx
Subroutine N...' Intermediate

x sub2 0' Signatures--'V-____I
sc

RETURN S

Figure 8: Subroutine Signaturing Technique.

Range Average

Instructions 16.3-63.8K 38.9K

NOPs 11.06-16.83% 12.97%

Conditional 7.40-9.80% 8.75%
Branches

Calls (JAL) 4.99-7.96% 6.36%

Calls (JALR) 0.01-0.23% 0.09%

Returns 0.77-1.59% 1.24%

Loop Ends 1.23-2.19% 1.69%

Table 1: Data From Example MIPS RISC Program Code.

